%global _empty_manifest_terminate_build 0 Name: python-fireflyalgorithm Version: 0.4.6 Release: 1 Summary: Implementation of Firefly Algorithm in Python License: MIT URL: https://github.com/firefly-cpp/FireflyAlgorithm Source0: https://mirrors.aliyun.com/pypi/web/packages/99/dc/e968e2e2c2a741df2ac8cc5ab66db73c1485ae9c0d00ba4a51b9f64c2163/fireflyalgorithm-0.4.6.tar.gz BuildArch: noarch Requires: (python3-numpy<2.0.0 with python3-numpy>=1.26.1) %description

Firefly Algorithm --- Implementation of Firefly algorithm in Python

PyPI Version PyPI - Python Version Downloads GitHub repo size AUR package GitHub license build

GitHub commit activity Average time to resolve an issue Percentage of issues still open GitHub contributors Packaging status

DOI

πŸ“‹ About β€’ πŸ“¦ Installation β€’ πŸš€ Usage β€’ πŸ“š Reference Papers β€’ πŸ“„ Cite us β€’ πŸ”‘ License

## πŸ“‹ About This package implements a nature-inspired algorithm for optimization called Firefly Algorithm (FA) in Python programming language. πŸŒΏπŸ”πŸ’» ## πŸ“¦ Installation To install FireflyAlgorithm with pip, use: ```sh pip install fireflyalgorithm ``` To install FireflyAlgorithm on Fedora, use: ```sh dnf install python-fireflyalgorithm ``` To install FireflyAlgorithm on Arch Linux, please use an [AUR helper](https://wiki.archlinux.org/title/AUR_helpers): ```sh $ yay -Syyu python-fireflyalgorithm ``` To install FireflyAlgorithm on Alpine Linux, use: ```sh $ apk add py3-fireflyalgorithm ``` ## πŸš€ Usage ```python from fireflyalgorithm import FireflyAlgorithm from fireflyalgorithm.problems import sphere FA = FireflyAlgorithm() best = FA.run(function=sphere, dim=10, lb=-5, ub=5, max_evals=10000) print(best) ``` ### Test functions πŸ“ˆ In the `fireflyalgorithm.problems` module, you can find the implementations of 33 popular optimization test problems. Additionally, the module provides a utility function, `get_problem`, that allows you to retrieve a specific optimization problem function by providing its name as a string: ```python from fireflyalgorithm.problems import get_problem # same as from fireflyalgorithm.problems import rosenbrock rosenbrock = get_problem('rosenbrock') ``` For more information about the implemented test functions, [click here](Problems.md). ### Command line interface πŸ–₯️ The package also comes with a simple command line interface which allows you to evaluate the algorithm on several popular test functions. πŸ”¬ ```shell firefly-algorithm -h ``` ```text usage: firefly-algorithm [-h] --problem PROBLEM -d DIMENSION -l LOWER -u UPPER -nfes MAX_EVALS [-r RUNS] [--pop-size POP_SIZE] [--alpha ALPHA] [--beta-min BETA_MIN] [--gamma GAMMA] [--seed SEED] Evaluate the Firefly Algorithm on one or more test functions options: -h, --help show this help message and exit --problem PROBLEM Test problem to evaluate -d DIMENSION, --dimension DIMENSION Dimension of the problem -l LOWER, --lower LOWER Lower bounds of the problem -u UPPER, --upper UPPER Upper bounds of the problem -nfes MAX_EVALS, --max-evals MAX_EVALS Max number of fitness function evaluations -r RUNS, --runs RUNS Number of runs of the algorithm --pop-size POP_SIZE Population size --alpha ALPHA Randomness strength --beta-min BETA_MIN Attractiveness constant --gamma GAMMA Absorption coefficient --seed SEED Seed for the random number generator ``` **Note:** The CLI script can also run as a python module (python -m fireflyalgorithm ...). ## πŸ“š Reference Papers I. Fister Jr., X.-S. Yang, I. Fister, J. Brest, D. Fister. [A Brief Review of Nature-Inspired Algorithms for Optimization](http://www.iztok-jr-fister.eu/static/publications/21.pdf). ElektrotehniΕ‘ki vestnik, 80(3), 116-122, 2013. I. Fister Jr., X.-S. Yang, I. Fister, J. Brest. [Memetic firefly algorithm for combinatorial optimization](http://www.iztok-jr-fister.eu/static/publications/44.pdf) in Bioinspired Optimization Methods and their Applications (BIOMA 2012), B. Filipic and J.Silc, Eds. Jozef Stefan Institute, Ljubljana, Slovenia, 2012 I. Fister, I. Fister Jr., X.-S. Yang, J. Brest. [A comprehensive review of firefly algorithms](http://www.iztok-jr-fister.eu/static/publications/23.pdf). Swarm and Evolutionary Computation 13 (2013): 34-46. ## πŸ“„ Cite us Fister Jr., I., Pečnik, L., & Stupan, Ε½. (2023). firefly-cpp/FireflyAlgorithm: 0.4.3 (0.4.3). Zenodo. [https://doi.org/10.5281/zenodo.10430919](https://doi.org/10.5281/zenodo.10430919) ## πŸ”‘ License This package is distributed under the MIT License. This license can be found online at . ## Disclaimer This framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk! %package -n python3-fireflyalgorithm Summary: Implementation of Firefly Algorithm in Python Provides: python-fireflyalgorithm BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip BuildRequires: python3-wheel %description -n python3-fireflyalgorithm

Firefly Algorithm --- Implementation of Firefly algorithm in Python

PyPI Version PyPI - Python Version Downloads GitHub repo size AUR package GitHub license build

GitHub commit activity Average time to resolve an issue Percentage of issues still open GitHub contributors Packaging status

DOI

πŸ“‹ About β€’ πŸ“¦ Installation β€’ πŸš€ Usage β€’ πŸ“š Reference Papers β€’ πŸ“„ Cite us β€’ πŸ”‘ License

## πŸ“‹ About This package implements a nature-inspired algorithm for optimization called Firefly Algorithm (FA) in Python programming language. πŸŒΏπŸ”πŸ’» ## πŸ“¦ Installation To install FireflyAlgorithm with pip, use: ```sh pip install fireflyalgorithm ``` To install FireflyAlgorithm on Fedora, use: ```sh dnf install python-fireflyalgorithm ``` To install FireflyAlgorithm on Arch Linux, please use an [AUR helper](https://wiki.archlinux.org/title/AUR_helpers): ```sh $ yay -Syyu python-fireflyalgorithm ``` To install FireflyAlgorithm on Alpine Linux, use: ```sh $ apk add py3-fireflyalgorithm ``` ## πŸš€ Usage ```python from fireflyalgorithm import FireflyAlgorithm from fireflyalgorithm.problems import sphere FA = FireflyAlgorithm() best = FA.run(function=sphere, dim=10, lb=-5, ub=5, max_evals=10000) print(best) ``` ### Test functions πŸ“ˆ In the `fireflyalgorithm.problems` module, you can find the implementations of 33 popular optimization test problems. Additionally, the module provides a utility function, `get_problem`, that allows you to retrieve a specific optimization problem function by providing its name as a string: ```python from fireflyalgorithm.problems import get_problem # same as from fireflyalgorithm.problems import rosenbrock rosenbrock = get_problem('rosenbrock') ``` For more information about the implemented test functions, [click here](Problems.md). ### Command line interface πŸ–₯️ The package also comes with a simple command line interface which allows you to evaluate the algorithm on several popular test functions. πŸ”¬ ```shell firefly-algorithm -h ``` ```text usage: firefly-algorithm [-h] --problem PROBLEM -d DIMENSION -l LOWER -u UPPER -nfes MAX_EVALS [-r RUNS] [--pop-size POP_SIZE] [--alpha ALPHA] [--beta-min BETA_MIN] [--gamma GAMMA] [--seed SEED] Evaluate the Firefly Algorithm on one or more test functions options: -h, --help show this help message and exit --problem PROBLEM Test problem to evaluate -d DIMENSION, --dimension DIMENSION Dimension of the problem -l LOWER, --lower LOWER Lower bounds of the problem -u UPPER, --upper UPPER Upper bounds of the problem -nfes MAX_EVALS, --max-evals MAX_EVALS Max number of fitness function evaluations -r RUNS, --runs RUNS Number of runs of the algorithm --pop-size POP_SIZE Population size --alpha ALPHA Randomness strength --beta-min BETA_MIN Attractiveness constant --gamma GAMMA Absorption coefficient --seed SEED Seed for the random number generator ``` **Note:** The CLI script can also run as a python module (python -m fireflyalgorithm ...). ## πŸ“š Reference Papers I. Fister Jr., X.-S. Yang, I. Fister, J. Brest, D. Fister. [A Brief Review of Nature-Inspired Algorithms for Optimization](http://www.iztok-jr-fister.eu/static/publications/21.pdf). ElektrotehniΕ‘ki vestnik, 80(3), 116-122, 2013. I. Fister Jr., X.-S. Yang, I. Fister, J. Brest. [Memetic firefly algorithm for combinatorial optimization](http://www.iztok-jr-fister.eu/static/publications/44.pdf) in Bioinspired Optimization Methods and their Applications (BIOMA 2012), B. Filipic and J.Silc, Eds. Jozef Stefan Institute, Ljubljana, Slovenia, 2012 I. Fister, I. Fister Jr., X.-S. Yang, J. Brest. [A comprehensive review of firefly algorithms](http://www.iztok-jr-fister.eu/static/publications/23.pdf). Swarm and Evolutionary Computation 13 (2013): 34-46. ## πŸ“„ Cite us Fister Jr., I., Pečnik, L., & Stupan, Ε½. (2023). firefly-cpp/FireflyAlgorithm: 0.4.3 (0.4.3). Zenodo. [https://doi.org/10.5281/zenodo.10430919](https://doi.org/10.5281/zenodo.10430919) ## πŸ”‘ License This package is distributed under the MIT License. This license can be found online at . ## Disclaimer This framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk! %package help Summary: Development documents and examples for fireflyalgorithm Provides: python3-fireflyalgorithm-doc %description help

Firefly Algorithm --- Implementation of Firefly algorithm in Python

PyPI Version PyPI - Python Version Downloads GitHub repo size AUR package GitHub license build

GitHub commit activity Average time to resolve an issue Percentage of issues still open GitHub contributors Packaging status

DOI

πŸ“‹ About β€’ πŸ“¦ Installation β€’ πŸš€ Usage β€’ πŸ“š Reference Papers β€’ πŸ“„ Cite us β€’ πŸ”‘ License

## πŸ“‹ About This package implements a nature-inspired algorithm for optimization called Firefly Algorithm (FA) in Python programming language. πŸŒΏπŸ”πŸ’» ## πŸ“¦ Installation To install FireflyAlgorithm with pip, use: ```sh pip install fireflyalgorithm ``` To install FireflyAlgorithm on Fedora, use: ```sh dnf install python-fireflyalgorithm ``` To install FireflyAlgorithm on Arch Linux, please use an [AUR helper](https://wiki.archlinux.org/title/AUR_helpers): ```sh $ yay -Syyu python-fireflyalgorithm ``` To install FireflyAlgorithm on Alpine Linux, use: ```sh $ apk add py3-fireflyalgorithm ``` ## πŸš€ Usage ```python from fireflyalgorithm import FireflyAlgorithm from fireflyalgorithm.problems import sphere FA = FireflyAlgorithm() best = FA.run(function=sphere, dim=10, lb=-5, ub=5, max_evals=10000) print(best) ``` ### Test functions πŸ“ˆ In the `fireflyalgorithm.problems` module, you can find the implementations of 33 popular optimization test problems. Additionally, the module provides a utility function, `get_problem`, that allows you to retrieve a specific optimization problem function by providing its name as a string: ```python from fireflyalgorithm.problems import get_problem # same as from fireflyalgorithm.problems import rosenbrock rosenbrock = get_problem('rosenbrock') ``` For more information about the implemented test functions, [click here](Problems.md). ### Command line interface πŸ–₯️ The package also comes with a simple command line interface which allows you to evaluate the algorithm on several popular test functions. πŸ”¬ ```shell firefly-algorithm -h ``` ```text usage: firefly-algorithm [-h] --problem PROBLEM -d DIMENSION -l LOWER -u UPPER -nfes MAX_EVALS [-r RUNS] [--pop-size POP_SIZE] [--alpha ALPHA] [--beta-min BETA_MIN] [--gamma GAMMA] [--seed SEED] Evaluate the Firefly Algorithm on one or more test functions options: -h, --help show this help message and exit --problem PROBLEM Test problem to evaluate -d DIMENSION, --dimension DIMENSION Dimension of the problem -l LOWER, --lower LOWER Lower bounds of the problem -u UPPER, --upper UPPER Upper bounds of the problem -nfes MAX_EVALS, --max-evals MAX_EVALS Max number of fitness function evaluations -r RUNS, --runs RUNS Number of runs of the algorithm --pop-size POP_SIZE Population size --alpha ALPHA Randomness strength --beta-min BETA_MIN Attractiveness constant --gamma GAMMA Absorption coefficient --seed SEED Seed for the random number generator ``` **Note:** The CLI script can also run as a python module (python -m fireflyalgorithm ...). ## πŸ“š Reference Papers I. Fister Jr., X.-S. Yang, I. Fister, J. Brest, D. Fister. [A Brief Review of Nature-Inspired Algorithms for Optimization](http://www.iztok-jr-fister.eu/static/publications/21.pdf). ElektrotehniΕ‘ki vestnik, 80(3), 116-122, 2013. I. Fister Jr., X.-S. Yang, I. Fister, J. Brest. [Memetic firefly algorithm for combinatorial optimization](http://www.iztok-jr-fister.eu/static/publications/44.pdf) in Bioinspired Optimization Methods and their Applications (BIOMA 2012), B. Filipic and J.Silc, Eds. Jozef Stefan Institute, Ljubljana, Slovenia, 2012 I. Fister, I. Fister Jr., X.-S. Yang, J. Brest. [A comprehensive review of firefly algorithms](http://www.iztok-jr-fister.eu/static/publications/23.pdf). Swarm and Evolutionary Computation 13 (2013): 34-46. ## πŸ“„ Cite us Fister Jr., I., Pečnik, L., & Stupan, Ε½. (2023). firefly-cpp/FireflyAlgorithm: 0.4.3 (0.4.3). Zenodo. [https://doi.org/10.5281/zenodo.10430919](https://doi.org/10.5281/zenodo.10430919) ## πŸ”‘ License This package is distributed under the MIT License. This license can be found online at . ## Disclaimer This framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk! %prep %autosetup -n fireflyalgorithm-0.4.6 %build %pyproject_build %install %pyproject_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} touch filelist.lst if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-fireflyalgorithm -f filelist.lst %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Sat Aug 16 2025 Python_Bot - 0.4.6-1 - Package Spec generated