summaryrefslogtreecommitdiff
path: root/zlib-1.3-SIMD.patch
diff options
context:
space:
mode:
Diffstat (limited to 'zlib-1.3-SIMD.patch')
-rw-r--r--zlib-1.3-SIMD.patch770
1 files changed, 770 insertions, 0 deletions
diff --git a/zlib-1.3-SIMD.patch b/zlib-1.3-SIMD.patch
new file mode 100644
index 0000000..3d4ec3e
--- /dev/null
+++ b/zlib-1.3-SIMD.patch
@@ -0,0 +1,770 @@
+From 91c1e78feec94739cc5da8562b3e2395bfdf6193 Mon Sep 17 00:00:00 2001
+From: hedongbo <hedongbo@huawei.com>
+Date: Sun, 14 Sep 2020 15:36:12 +0800
+Subject: [PATCH] zlib-1.2.11-SIMD.patch
+
+In the sampling of the Hive test program, it is found that inflate occupies a high proportion.
+The zlib is optimized through instruction set optimization, hash replacement, and compilation option optimization.
+The inflate and deflate processes of the Zlib library provided by the JDK are optimized to shorten the invoking time.
+---
+ CMakeLists.txt | 6 +
+ adler32.c | 169 +++++++++++++++++++++-
+ deflate.c | 22 ++-
+ inffast.c | 62 ++++++++-
+ inffast.h | 370 +++++++++++++++++++++++++++++++++++++++++++++++++
+ inflate.c | 7 +
+ 6 files changed, 627 insertions(+), 9 deletions(-)
+
+diff --git a/CMakeLists.txt b/CMakeLists.txt
+index b412dc7..40dc533 100644
+--- a/CMakeLists.txt
++++ b/CMakeLists.txt
+@@ -126,6 +126,12 @@ if(NOT MINGW)
+ )
+ endif()
+
++if(CMAKE_COMPILER_IS_GNUCC)
++ if(ARM_NEON)
++ add_definitions(-DHASH_ARMV8_CRC32 -march=armv8-a+crc -DUNALIGNED_OK -DADLER32_SIMD_NEON -DINFLATE_CHUNK_SIMD_NEON -O3)
++ endif()
++endif()
++
+ # parse the full version number from zlib.h and include in ZLIB_FULL_VERSION
+ file(READ ${CMAKE_CURRENT_SOURCE_DIR}/zlib.h _zlib_h_contents)
+ string(REGEX REPLACE ".*#define[ \t]+ZLIB_VERSION[ \t]+\"([-0-9A-Za-z.]+)\".*"
+diff --git a/adler32.c b/adler32.c
+index d0be438..6ced75d 100644
+--- a/adler32.c
++++ b/adler32.c
+@@ -59,7 +59,169 @@ local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
+ # define MOD63(a) a %= BASE
+ #endif
+
+-/* ========================================================================= */
++#if defined(ADLER32_SIMD_NEON)
++#include <arm_neon.h>
++/*
++ * Multiply-add bytes by [ 32, 31, 30, ... ] for s2.
++ */
++uint32x4_t ZLIB_INTERNAL mul_add_bytes(
++ uint32x4_t v_s2,
++ uint16x8_t v_column_sum_1,
++ uint16x8_t v_column_sum_2,
++ uint16x8_t v_column_sum_3,
++ uint16x8_t v_column_sum_4)
++{
++ v_s2 = vshlq_n_u32(v_s2, 5);
++
++ v_s2 = vmlal_u16(v_s2, vget_low_u16 (v_column_sum_1),
++ (uint16x4_t) { 32, 31, 30, 29 });
++ v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1),
++ (uint16x4_t) { 28, 27, 26, 25 });
++ v_s2 = vmlal_u16(v_s2, vget_low_u16 (v_column_sum_2),
++ (uint16x4_t) { 24, 23, 22, 21 });
++ v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2),
++ (uint16x4_t) { 20, 19, 18, 17 });
++ v_s2 = vmlal_u16(v_s2, vget_low_u16 (v_column_sum_3),
++ (uint16x4_t) { 16, 15, 14, 13 });
++ v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3),
++ (uint16x4_t) { 12, 11, 10, 9 });
++ v_s2 = vmlal_u16(v_s2, vget_low_u16 (v_column_sum_4),
++ (uint16x4_t) { 8, 7, 6, 5 });
++ v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4),
++ (uint16x4_t) { 4, 3, 2, 1 });
++ return v_s2;
++}
++
++/*
++ * Handle leftover data.
++ */
++uLong ZLIB_INTERNAL leftover_handler(uint32_t s1, uint32_t s2, const Bytef *buf, z_size_t len)
++{
++ if (len) {
++ if (len >= 16) {
++ s2 += (s1 += *buf++);
++ s2 += (s1 += *buf++);
++ s2 += (s1 += *buf++);
++ s2 += (s1 += *buf++);
++
++ s2 += (s1 += *buf++);
++ s2 += (s1 += *buf++);
++ s2 += (s1 += *buf++);
++ s2 += (s1 += *buf++);
++
++ s2 += (s1 += *buf++);
++ s2 += (s1 += *buf++);
++ s2 += (s1 += *buf++);
++ s2 += (s1 += *buf++);
++
++ s2 += (s1 += *buf++);
++ s2 += (s1 += *buf++);
++ s2 += (s1 += *buf++);
++ s2 += (s1 += *buf++);
++
++ len -= 16;
++ }
++
++ while (len--) {
++ s2 += (s1 += *buf++);
++ }
++
++ if (s1 >= BASE)
++ s1 -= BASE;
++ s2 %= BASE;
++ }
++
++ /*
++ * Return the recombined sums.
++ */
++ return s1 | (s2 << 16);
++}
++
++uLong ZLIB_INTERNAL adler32_simd_(uLong adler, const Bytef *buf, z_size_t len)
++{
++ /*
++ * Split Adler-32 into component sums.
++ */
++ uint32_t s1 = adler & 0xffff;
++ uint32_t s2 = adler >> 16;
++ /*
++ * Serially compute s1 & s2, until the data is 16-byte aligned.
++ */
++ if ((uintptr_t)buf & 0xf) {
++ while ((uintptr_t)buf & 0xf) {
++ s2 += (s1 += *buf++);
++ --len;
++ }
++ if (s1 >= BASE)
++ s1 -= BASE;
++ s2 %= BASE;
++ }
++ /*
++ * Process the data in blocks.
++ */
++ const unsigned BLOCK_SIZE = 1 << 5;
++ z_size_t blocks = len / BLOCK_SIZE;
++ len -= blocks * BLOCK_SIZE;
++ while (blocks) {
++ unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
++ if (n > blocks)
++ n = (unsigned) blocks;
++ blocks -= n;
++ /*
++ * Process n blocks of data. At most NMAX data bytes can be
++ * processed before s2 must be reduced modulo BASE.
++ */
++ uint32x4_t v_s2 = (uint32x4_t) { 0, 0, 0, s1 * n };
++ uint32x4_t v_s1 = (uint32x4_t) { 0, 0, 0, 0 };
++
++ uint16x8_t v_column_sum_1 = vdupq_n_u16(0);
++ uint16x8_t v_column_sum_2 = vdupq_n_u16(0);
++ uint16x8_t v_column_sum_3 = vdupq_n_u16(0);
++ uint16x8_t v_column_sum_4 = vdupq_n_u16(0);
++ do {
++ /*
++ * Load 32 input bytes.
++ */
++ const uint8x16_t bytes1 = vld1q_u8((uint8_t*)(buf));
++ const uint8x16_t bytes2 = vld1q_u8((uint8_t*)(buf + 16));
++ /*
++ * Add previous block byte sum to v_s2.
++ */
++ v_s2 = vaddq_u32(v_s2, v_s1);
++ /*
++ * Horizontally add the bytes for s1.
++ */
++ v_s1 = vpadalq_u16(v_s1, vpadalq_u8(vpaddlq_u8(bytes1), bytes2));
++ /*
++ * Vertically add the bytes for s2.
++ */
++ v_column_sum_1 = vaddw_u8(v_column_sum_1, vget_low_u8 (bytes1));
++ v_column_sum_2 = vaddw_u8(v_column_sum_2, vget_high_u8(bytes1));
++ v_column_sum_3 = vaddw_u8(v_column_sum_3, vget_low_u8 (bytes2));
++ v_column_sum_4 = vaddw_u8(v_column_sum_4, vget_high_u8(bytes2));
++ buf += BLOCK_SIZE;
++ } while (--n);
++ v_s2 = mul_add_bytes(v_s2, v_column_sum_1, v_column_sum_2, v_column_sum_3, v_column_sum_4);
++ /*
++ * Sum epi32 ints v_s1(s2) and accumulate in s1(s2).
++ */
++ uint32x2_t sum1 = vpadd_u32(vget_low_u32(v_s1), vget_high_u32(v_s1));
++ uint32x2_t sum2 = vpadd_u32(vget_low_u32(v_s2), vget_high_u32(v_s2));
++ uint32x2_t s1s2 = vpadd_u32(sum1, sum2);
++
++ s1 += vget_lane_u32(s1s2, 0);
++ s2 += vget_lane_u32(s1s2, 1);
++ /*
++ * Reduce.
++ */
++ s1 %= BASE;
++ s2 %= BASE;
++ }
++ return leftover_handler(s1, s2, buf, len);
++
++}
++#endif
++
+ uLong ZEXPORT adler32_z(uLong adler, const Bytef *buf, z_size_t len) {
+ unsigned long sum2;
+ unsigned n;
+@@ -68,6 +230,11 @@ uLong ZEXPORT adler32_z(adler, buf, len)
+ unsigned long sum2;
+ unsigned n;
+
++#if defined(ADLER32_SIMD_NEON)
++ if (buf && len >= 64)
++ return adler32_simd_(adler, buf, len);
++#endif
++
+ /* split Adler-32 into component sums */
+ sum2 = (adler >> 16) & 0xffff;
+ adler &= 0xffff;
+diff --git a/deflate.c b/deflate.c
+index f290783..31d1cfe 100644
+--- a/deflate.c
++++ b/deflate.c
+@@ -154,7 +154,16 @@ local const config configuration_table[10] = {
+ * characters, so that a running hash key can be computed from the previous
+ * key instead of complete recalculation each time.
+ */
+-#define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
++#if defined(HASH_ARMV8_CRC32)
++#include <arm_acle.h>
++#define UPDATE_HASH_CRC_INTERNAL(s, h, c) \
++ (h = __crc32w(0, (c) & 0xFFFFFF) & ((deflate_state *)s)->hash_mask)
++
++#define UPDATE_HASH(s, h, c) \
++ UPDATE_HASH_CRC_INTERNAL(s, h, *(unsigned *)((uintptr_t)(&c) - (MIN_MATCH-1)))
++#else
++#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
++#endif
+
+
+ /* ===========================================================================
+@@ -1226,14 +1235,15 @@ local unsigned read_buf(strm, buf, size)
+ strm->avail_in -= len;
+
+ zmemcpy(buf, strm->next_in, len);
+- if (strm->state->wrap == 1) {
+- strm->adler = adler32(strm->adler, buf, len);
+- }
+ #ifdef GZIP
+- else if (strm->state->wrap == 2) {
++ if (strm->state->wrap == 2) { /* use crc32 algo */
+ strm->adler = crc32(strm->adler, buf, len);
+- }
++ } else
+ #endif
++ if (strm->state->wrap == 1) {
++ strm->adler = adler32(strm->adler, buf, len);
++ }
++
+ strm->next_in += len;
+ strm->total_in += len;
+
+diff --git a/inffast.c b/inffast.c
+index 1fec7f3..84c5aba 100644
+--- a/inffast.c
++++ b/inffast.c
+@@ -57,6 +57,9 @@ unsigned start; /* inflate()'s starting value for strm->avail_out */
+ unsigned char FAR *out; /* local strm->next_out */
+ unsigned char FAR *beg; /* inflate()'s initial strm->next_out */
+ unsigned char FAR *end; /* while out < end, enough space available */
++#if defined(INFLATE_CHUNK_SIMD_NEON)
++ unsigned char FAR *limit; /* safety limit for chunky copies */
++#endif
+ #ifdef INFLATE_STRICT
+ unsigned dmax; /* maximum distance from zlib header */
+ #endif
+@@ -89,7 +92,12 @@ unsigned start; /* inflate()'s starting value for strm->avail_out */
+ #endif
+ wsize = state->wsize;
+ whave = state->whave;
++#if defined(INFLATE_CHUNK_SIMD_NEON)
++ limit = out + strm->avail_out;
++ wnext = (state->wnext == 0 && whave >= wsize) ? wsize : state->wnext;
++#else
+ wnext = state->wnext;
++#endif
+ window = state->window;
+ hold = state->hold;
+ bits = state->bits;
+@@ -197,6 +205,45 @@ unsigned start; /* inflate()'s starting value for strm->avail_out */
+ #endif
+ }
+ from = window;
++#if defined(INFLATE_CHUNK_SIMD_NEON)
++ if (wnext >= op) { /* contiguous in window */
++ from += wnext - op;
++ }
++ else { /* wrap around window */
++ op -= wnext;
++ from += wsize - op;
++ if (op < len) { /* some from end of window */
++ len -= op;
++ out = chunkcopy_safe(out, from, op, limit);
++ from = window; /* more from start of window */
++ op = wnext;
++ /* This (rare) case can create a situation where
++ the first chunkcopy below must be checked.
++ */
++ }
++ }
++ if (op < len) { /* still need some from output */
++ out = chunkcopy_safe(out, from, op, limit);
++ len -= op;
++ /* When dist is small the amount of data that can be
++ copied from the window is also small, and progress
++ towards the dangerous end of the output buffer is
++ also small. This means that for trivial memsets and
++ for chunkunroll_relaxed() a safety check is
++ unnecessary. However, these conditions may not be
++ entered at all, and in that case it's possible that
++ the main copy is near the end.
++ */
++ out = chunkunroll_relaxed(out, &dist, &len);
++ out = chunkcopy_safe(out, out - dist, len, limit);
++ }
++ else {
++ /* from points to window, so there is no risk of
++ overlapping pointers requiring memset-like behaviour
++ */
++ out = chunkcopy_safe(out, from, len, limit);
++ }
++#else
+ if (wnext == 0) { /* very common case */
+ from += wsize - op;
+ if (op < len) { /* some from window */
+@@ -247,8 +294,18 @@ unsigned start; /* inflate()'s starting value for strm->avail_out */
+ if (len > 1)
+ *out++ = *from++;
+ }
++#endif
+ }
+- else {
++ else {
++#if defined(INFLATE_CHUNK_SIMD_NEON)
++ /* Whole reference is in range of current output. No
++ range checks are necessary because we start with room
++ for at least 258 bytes of output, so unroll and roundoff
++ operations can write beyond `out+len` so long as they
++ stay within 258 bytes of `out`.
++ */
++ out = chunkcopy_lapped_relaxed(out, dist, len);
++#else
+ from = out - dist; /* copy direct from output */
+ do { /* minimum length is three */
+ *out++ = *from++;
+@@ -260,7 +317,8 @@ unsigned start; /* inflate()'s starting value for strm->avail_out */
+ *out++ = *from++;
+ if (len > 1)
+ *out++ = *from++;
+- }
++ }
++#endif
+ }
+ }
+ else if ((op & 64) == 0) { /* 2nd level distance code */
+diff --git a/inffast.h b/inffast.h
+index e5c1aa4..259882c 100644
+--- a/inffast.h
++++ b/inffast.h
+@@ -8,4 +8,374 @@
+ subject to change. Applications should only use zlib.h.
+ */
+
++/*
++ * The chunk-copy code below deals with writing the decoded DEFLATE data to
++ * the output with SIMD methods to increase decode speed. Reading the input
++ * to the DEFLATE decoder with a wide, SIMD method can also increase decode
++ * speed. This option is supported on little endian machines, and reads the
++ * input data in 64-bit (8 byte) chunks.
++ */
++
+ void ZLIB_INTERNAL inflate_fast(z_streamp strm, unsigned start);
++
++#if defined(INFLATE_CHUNK_SIMD_NEON)
++
++#include <stdint.h>
++#include "zutil.h"
++#include <arm_neon.h>
++
++typedef uint8x16_t z_vec128i_t;
++
++#define Z_STATIC_ASSERT(name, assert) typedef char name[(assert) ? 1 : -1]
++
++#if __STDC_VERSION__ >= 199901L
++#define Z_RESTRICT restrict
++#else
++#define Z_RESTRICT
++#endif
++
++#if defined(__clang__) || defined(__GNUC__) || defined(__llvm__)
++#define Z_BUILTIN_MEMCPY __builtin_memcpy
++#else
++#define Z_BUILTIN_MEMCPY zmemcpy
++#endif
++
++/*
++ * chunk copy type: the z_vec128i_t type size should be exactly 128-bits
++ * and equal to CHUNKCOPY_CHUNK_SIZE.
++ */
++#define CHUNKCOPY_CHUNK_SIZE sizeof(z_vec128i_t)
++
++Z_STATIC_ASSERT(vector_128_bits_wide,
++ CHUNKCOPY_CHUNK_SIZE == sizeof(int8_t) * 16);
++
++/*
++ * Ask the compiler to perform a wide, unaligned load with a machinevst1q_u8
++ * instruction appropriate for the z_vec128i_t type.
++ */
++static inline z_vec128i_t loadchunk(
++ const unsigned char FAR* s)
++{
++ z_vec128i_t v;
++ Z_BUILTIN_MEMCPY(&v, s, sizeof(v));
++ return v;
++}
++
++/*
++ * Ask the compiler to perform a wide, unaligned store with a machine
++ * instruction appropriate for the z_vec128i_t type.
++ */
++static inline void storechunk(
++ unsigned char FAR* d,
++ const z_vec128i_t v)
++{
++ Z_BUILTIN_MEMCPY(d, &v, sizeof(v));
++}
++
++/*
++ * Perform a memcpy-like operation, assuming that length is non-zero and that
++ * it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE bytes of output even if
++ * the length is shorter than this.
++ *
++ * It also guarantees that it will properly unroll the data if the distance
++ * between `out` and `from` is at least CHUNKCOPY_CHUNK_SIZE, which we rely on
++ * in chunkcopy_relaxed().
++ *
++ * Aside from better memory bus utilisation, this means that short copies
++ * (CHUNKCOPY_CHUNK_SIZE bytes or fewer) will fall straight through the loop
++ * without iteration, which will hopefully make the branch prediction more
++ * reliable.
++ */
++static inline unsigned char FAR* chunkcopy_core(
++ unsigned char FAR* out,
++ const unsigned char FAR* from,
++ unsigned len)
++{
++ const int bump = (--len % CHUNKCOPY_CHUNK_SIZE) + 1;
++ storechunk(out, loadchunk(from));
++ out += bump;
++ from += bump;
++ len /= CHUNKCOPY_CHUNK_SIZE;
++ while (len-- > 0) {
++ storechunk(out, loadchunk(from));
++ out += CHUNKCOPY_CHUNK_SIZE;
++ from += CHUNKCOPY_CHUNK_SIZE;
++ }
++ return out;
++}
++
++/*
++ * Like chunkcopy_core(), but avoid writing beyond of legal output.
++ *
++ * Accepts an additional pointer to the end of safe output. A generic safe
++ * copy would use (out + len), but it's normally the case that the end of the
++ * output buffer is beyond the end of the current copy, and this can still be
++ * exploited.
++ */
++static inline unsigned char FAR* chunkcopy_core_safe(
++ unsigned char FAR* out,
++ const unsigned char FAR* from,
++ unsigned len,
++ unsigned char FAR* limit)
++{
++ Assert(out + len <= limit, "chunk copy exceeds safety limit");
++ if ((limit - out) < (ptrdiff_t) CHUNKCOPY_CHUNK_SIZE) {
++ const unsigned char FAR* Z_RESTRICT rfrom = from;
++ if (len & 8) {
++ Z_BUILTIN_MEMCPY(out, rfrom, 8);
++ out += 8;
++ rfrom += 8;
++ }
++ if (len & 4) {
++ Z_BUILTIN_MEMCPY(out, rfrom, 4);
++ out += 4;
++ rfrom += 4;
++ }
++ if (len & 2) {
++ Z_BUILTIN_MEMCPY(out, rfrom, 2);
++ out += 2;
++ rfrom += 2;
++ }
++ if (len & 1) {
++ *out++ = *rfrom++;
++ }
++ return out;
++ }
++ return chunkcopy_core(out, from, len);
++}
++
++/*
++ * Perform short copies until distance can be rewritten as being at least
++ * CHUNKCOPY_CHUNK_SIZE.
++ *
++ * Assumes it's OK to overwrite at least the first 2*CHUNKCOPY_CHUNK_SIZE
++ * bytes of output even if the copy is shorter than this. This assumption
++ * holds within zlib inflate_fast(), which starts every iteration with at
++ * least 258 bytes of output space available (258 being the maximum length
++ * output from a single token; see inffast.c).
++ */
++static inline unsigned char FAR* chunkunroll_relaxed(
++ unsigned char FAR* out,
++ unsigned FAR* dist,
++ unsigned FAR* len)
++{
++ const unsigned char FAR* from = out - *dist;
++ while (*dist < *len && *dist < CHUNKCOPY_CHUNK_SIZE) {
++ storechunk(out, loadchunk(from));
++ out += *dist;
++ *len -= *dist;
++ *dist += *dist;
++ }
++ return out;
++}
++
++/*
++ * v_load64_dup(): load *src as an unaligned 64-bit int and duplicate it in
++ * every 64-bit component of the 128-bit result (64-bit int splat).
++ */
++static inline z_vec128i_t v_load64_dup(const void* src)
++{
++ return vcombine_u8(vld1_u8(src), vld1_u8(src));
++}
++
++/*
++ * v_load32_dup(): load *src as an unaligned 32-bit int and duplicate it in
++ * every 32-bit component of the 128-bit result (32-bit int splat).
++ */
++static inline z_vec128i_t v_load32_dup(const void* src)
++{
++ int32_t i32;
++ Z_BUILTIN_MEMCPY(&i32, src, sizeof(i32));
++ return vreinterpretq_u8_s32(vdupq_n_s32(i32));
++}
++
++/*
++ * v_load16_dup(): load *src as an unaligned 16-bit int and duplicate it in
++ * every 16-bit component of the 128-bit result (16-bit int splat).
++ */
++static inline z_vec128i_t v_load16_dup(const void* src)
++{
++ int16_t i16;
++ Z_BUILTIN_MEMCPY(&i16, src, sizeof(i16));
++ return vreinterpretq_u8_s16(vdupq_n_s16(i16));
++}
++
++/*
++ * v_load8_dup(): load the 8-bit int *src and duplicate it in every 8-bit
++ * component of the 128-bit result (8-bit int splat).
++ */
++static inline z_vec128i_t v_load8_dup(const void* src)
++{
++ return vld1q_dup_u8((const uint8_t*) src);
++}
++
++/*
++ * v_store_128(): store the 128-bit vec in a memory destination (that might
++ * not be 16-byte aligned) void* out.
++ */
++static inline void v_store_128(unsigned char* out, const z_vec128i_t vec)
++{
++ vst1q_u8(out, vec);
++}
++
++/*
++ * Perform an overlapping copy which behaves as a memset() operation, but
++ * supporting periods other than one, and assume that length is non-zero and
++ * that it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE*3 bytes of output
++ * even if the length is shorter than this.
++ */
++static inline unsigned char FAR* chunkset_store_result(
++ unsigned len,
++ unsigned char FAR* out,
++ z_vec128i_t v)
++{
++ do {
++ v_store_128(out, v);
++ out += sizeof(v);
++ len -= sizeof(v);
++ } while (len > 0);
++ return out;
++}
++
++static inline unsigned char FAR* chunkset_core(unsigned char FAR* out, unsigned period, unsigned len)
++{
++ z_vec128i_t v;
++ const int bump = ((len - 1) % sizeof(v)) + 1;
++ switch (period) {
++ case 1:
++ v = v_load8_dup(out - 1);
++ v_store_128(out, v);
++ out += bump;
++ len -= bump;
++ while (len > 0) {
++ v_store_128(out, v);
++ out += sizeof(v);
++ len -= sizeof(v);
++ }
++ return out;
++ case 2:
++ v = v_load16_dup(out - 2);
++ v_store_128(out, v);
++ out += bump;
++ len -= bump;
++ if (len > 0) {
++ v = v_load16_dup(out - 2);
++ out = chunkset_store_result(len, out, v);
++ }
++ return out;
++ case 4:
++ v = v_load32_dup(out - 4);
++ v_store_128(out, v);
++ out += bump;
++ len -= bump;
++ if (len > 0) {
++ v = v_load32_dup(out - 4);
++ out = chunkset_store_result(len, out, v);
++ }
++ return out;
++ case 8:
++ v = v_load64_dup(out - 8);
++ v_store_128(out, v);
++ out += bump;
++ len -= bump;
++ if (len > 0) {
++ v = v_load64_dup(out - 8);
++ out = chunkset_store_result(len, out, v);
++ }
++ return out;
++ }
++ out = chunkunroll_relaxed(out, &period, &len);
++ return chunkcopy_core(out, out - period, len);
++}
++
++/*
++ * Perform a memcpy-like operation, but assume that length is non-zero and that
++ * it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE bytes of output even if
++ * the length is shorter than this.
++ *
++ * Unlike chunkcopy_core() above, no guarantee is made regarding the behaviour
++ * of overlapping buffers, regardless of the distance between the pointers.
++ * This is reflected in the `restrict`-qualified pointers, allowing the
++ * compiler to re-order loads and stores.
++ */
++static inline unsigned char FAR* chunkcopy_relaxed(
++ unsigned char FAR* Z_RESTRICT out,
++ const unsigned char FAR* Z_RESTRICT from,
++ unsigned len)
++{
++ return chunkcopy_core(out, from, len);
++}
++
++/*
++ * Like chunkcopy_relaxed(), but avoid writing beyond of legal output.
++ *
++ * Unlike chunkcopy_core_safe() above, no guarantee is made regarding the
++ * behaviour of overlapping buffers, regardless of the distance between the
++ * pointers. This is reflected in the `restrict`-qualified pointers, allowing
++ * the compiler to re-order loads and stores.
++ *
++ * Accepts an additional pointer to the end of safe output. A generic safe
++ * copy would use (out + len), but it's normally the case that the end of the
++ * output buffer is beyond the end of the current copy, and this can still be
++ * exploited.
++ */
++static inline unsigned char FAR* chunkcopy_safe(
++ unsigned char FAR* out,
++ const unsigned char FAR* Z_RESTRICT from,
++ unsigned len,
++ unsigned char FAR* limit)
++{
++ Assert(out + len <= limit, "chunk copy exceeds safety limit");
++ return chunkcopy_core_safe(out, from, len, limit);
++}
++
++/*
++ * Perform chunky copy within the same buffer, where the source and destination
++ * may potentially overlap.
++ *
++ * Assumes that len > 0 on entry, and that it's safe to write at least
++ * CHUNKCOPY_CHUNK_SIZE*3 bytes to the output.
++ */
++static inline unsigned char FAR* chunkcopy_lapped_relaxed(
++ unsigned char FAR* out,
++ unsigned dist,
++ unsigned len)
++{
++ if (dist < len && dist < CHUNKCOPY_CHUNK_SIZE) {
++ return chunkset_core(out, dist, len);
++ }
++ return chunkcopy_core(out, out - dist, len);
++}
++
++/*
++ * Behave like chunkcopy_lapped_relaxed(), but avoid writing beyond of legal
++ * output.
++ *
++ * Accepts an additional pointer to the end of safe output. A generic safe
++ * copy would use (out + len), but it's normally the case that the end of the
++ * output buffer is beyond the end of the current copy, and this can still be
++ * exploited.
++ */
++static inline unsigned char FAR* chunkcopy_lapped_safe(
++ unsigned char FAR* out,
++ unsigned dist,
++ unsigned len,
++ unsigned char FAR* limit)
++{
++ Assert(out + len <= limit, "chunk copy exceeds safety limit");
++ if ((limit - out) < (ptrdiff_t) (3 * CHUNKCOPY_CHUNK_SIZE)) {
++ while (len-- > 0) {
++ *out = *(out - dist);
++ out++;
++ }
++ return out;
++ }
++ return chunkcopy_lapped_relaxed(out, dist, len);
++}
++
++
++#undef Z_STATIC_ASSERT
++#undef Z_RESTRICT
++#undef Z_BUILTIN_MEMCPY
++
++#endif //defined(INFLATE_CHUNK_SIMD_NEON)
+diff --git a/inflate.c b/inflate.c
+index 8acbef4..4e695b1 100644
+--- a/inflate.c
++++ b/inflate.c
+@@ -408,9 +408,16 @@ unsigned copy;
+
+ /* if it hasn't been done already, allocate space for the window */
+ if (state->window == Z_NULL) {
++#if defined(INFLATE_CHUNK_SIMD_NEON)
++ unsigned wsize = 1U << state->wbits;
++ state->window = (unsigned char FAR *)
++ ZALLOC(strm, CHUNKCOPY_CHUNK_SIZE + wsize,
++ sizeof(unsigned char));
++#else
+ state->window = (unsigned char FAR *)
+ ZALLOC(strm, 1U << state->wbits,
+ sizeof(unsigned char));
++#endif
+ if (state->window == Z_NULL) return 1;
+ }
+
+--
+2.33.0
+