%global _empty_manifest_terminate_build 0 Name: python-pytorch Version: 2.2.2 Release: 1 Summary: Tensors and Dynamic neural networks in Python with strong GPU acceleration License: BSD-3-Clause URL: https://pytorch.org/ Source0: https://github.com/pytorch/pytorch/releases/download/v%{version}/pytorch-v%{version}.tar.gz Source1: pocketfft.tar.gz Source2: pthreadpool.tar.gz Source3: cpuinfo.tar.gz Source4: QNNPACK.tar.gz Source5: FXdiv.tar.gz Source6: tensorpipe.tar.gz Source7: FP16.tar.gz Source8: psimd.tar.gz Source9: onnx.tar.gz Source10: foxi.tar.gz Source11: gloo.tar.gz Source12: fbgemm.tar.gz Source13: googletest.tar.gz Source14: benchmark.tar.gz Source15: NNPACK.tar.gz Source16: XNNPACK.tar.gz Source17: sleef.tar.gz Source18: fmt.tar.gz Source19: pybind11.tar.gz Patch1: 0001-add-Wno-error-nonnull-for-test-cpp-api.patch Patch2: 0002-disable-git-submodule.patch Requires: python3-future Requires: python3-filelock Requires: python3-sympy Requires: python3-networkx Requires: python3-fsspec %description PyTorch is a Python package that provides two high-level features: - Tensor computation (like NumPy) with strong GPU acceleration - Deep neural networks built on a tape-based autograd system You can reuse your favorite Python packages such as NumPy, SciPy and Cython to extend PyTorch when needed. %package -n python3-pytorch Summary: Tensors and Dynamic neural networks in Python with strong GPU acceleration Provides: python-torch BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-setuptools_scm BuildRequires: python3-pbr BuildRequires: python3-pip BuildRequires: python3-wheel BuildRequires: python3-hatchling BuildRequires: python3-astunparse BuildRequires: python3-numpy BuildRequires: python3-pyyaml BuildRequires: cmake BuildRequires: python3-typing-extensions BuildRequires: python3-requests BuildRequires: g++ %description -n python3-pytorch PyTorch is a Python package that provides two high-level features: - Tensor computation (like NumPy) with strong GPU acceleration - Deep neural networks built on a tape-based autograd system You can reuse your favorite Python packages such as NumPy, SciPy and Cython to extend PyTorch when needed. %package help Summary: Development documents and examples for torch Provides: python3-pytorch-doc %description help PyTorch is a Python package that provides two high-level features: - Tensor computation (like NumPy) with strong GPU acceleration - Deep neural networks built on a tape-based autograd system You can reuse your favorite Python packages such as NumPy, SciPy and Cython to extend PyTorch when needed. %prep %autosetup -p1 -n %{name}-%{version} tar -xzf %{_sourcedir}/pocketfft.tar.gz -C %{_sourcedir} && mv %{_sourcedir}/pocketfft ./third_party/ tar -xzf %{_sourcedir}/pthreadpool.tar.gz -C %{_sourcedir} && mv %{_sourcedir}/pthreadpool ./third_party/ tar -xzf %{_sourcedir}/cpuinfo.tar.gz -C %{_sourcedir} && mv %{_sourcedir}/cpuinfo ./third_party/ tar -xzf %{_sourcedir}/QNNPACK.tar.gz -C %{_sourcedir} && mv %{_sourcedir}/QNNPACK ./third_party/ tar -xzf %{_sourcedir}/FXdiv.tar.gz -C %{_sourcedir} && mv %{_sourcedir}/FXdiv ./third_party/ tar -xzf %{_sourcedir}/tensorpipe.tar.gz -C %{_sourcedir} && mv %{_sourcedir}/tensorpipe ./third_party/ tar -xzf %{_sourcedir}/FP16.tar.gz -C %{_sourcedir} && mv %{_sourcedir}/FP16 ./third_party/ tar -xzf %{_sourcedir}/psimd.tar.gz -C %{_sourcedir} && mv %{_sourcedir}/psimd ./third_party/ tar -xzf %{_sourcedir}/onnx.tar.gz -C %{_sourcedir} && mv %{_sourcedir}/onnx ./third_party/ tar -xzf %{_sourcedir}/foxi.tar.gz -C %{_sourcedir} && mv %{_sourcedir}/foxi ./third_party/ tar -xzf %{_sourcedir}/gloo.tar.gz -C %{_sourcedir} && mv %{_sourcedir}/gloo ./third_party/ tar -xzf %{_sourcedir}/fbgemm.tar.gz -C %{_sourcedir} && mv %{_sourcedir}/fbgemm ./third_party/ tar -xzf %{_sourcedir}/googletest.tar.gz -C %{_sourcedir} && mv %{_sourcedir}/googletest ./third_party/ tar -xzf %{_sourcedir}/benchmark.tar.gz -C %{_sourcedir} && mv %{_sourcedir}/benchmark ./third_party/ tar -xzf %{_sourcedir}/NNPACK.tar.gz -C %{_sourcedir} && mv %{_sourcedir}/NNPACK ./third_party/ tar -xzf %{_sourcedir}/XNNPACK.tar.gz -C %{_sourcedir} && mv %{_sourcedir}/XNNPACK ./third_party/ tar -xzf %{_sourcedir}/sleef.tar.gz -C %{_sourcedir} && mv %{_sourcedir}/sleef ./third_party/ tar -xzf %{_sourcedir}/fmt.tar.gz -C %{_sourcedir} && mv %{_sourcedir}/fmt ./third_party/ tar -xzf %{_sourcedir}/kineto.tar.gz -C %{_sourcedir} && mv %{_sourcedir}/kineto ./third_party/ tar -xzf %{_sourcedir}/pybind11.tar.gz -C %{_sourcedir} && mv %{_sourcedir}/pybind11 ./third_party/ %build export USE_CUDA=OFF export USE_KINETO=OFF export USE_QNNPACK=OFF export USE_NNPACK=OFF export USE_TENSORPIPE=OFF export BUILD_CUSTOM_PROTOBUF=OFF export USE_SYSTEM_SLEEF=ON export USE_XNNPACK=OFF #export USE_SYSTEM_CPUINFO=1 export CFLAGS+=" -Wno-error=maybe-uninitialized -Wno-error=uninitialized -Wno-error=restrict -fPIC" export CXXFLAGS+=" -Wno-error=maybe-uninitialized -Wno-error=uninitialized -Wno-error=restrict -fPIC" %pyproject_build %install %pyproject_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/doclist.lst . %files -n python3-pytorch %doc *.md %license LICENSE %{_bindir}/convert-caffe2-to-onnx %{_bindir}/convert-onnx-to-caffe2 %{_bindir}/torchrun %{python3_sitearch}/* %files help -f doclist.lst %{_docdir}/* %changelog * Thu Jan 11 2024 menma <1316818279@qq.com> - 2.2.2-1 - init package