summaryrefslogtreecommitdiff
path: root/python-easy-qlearning.spec
blob: 16a695cf391323a1753c4014bde6553f12474208 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
%global _empty_manifest_terminate_build 0
Name:		python-Easy-QLearning
Version:	1.1.0
Release:	1
Summary:	Simplify the creation of QLearning
License:	MIT License
URL:		https://github.com/ProfesseurIssou/Easy-QLearning
Source0:	https://mirrors.aliyun.com/pypi/web/packages/34/38/b5321d647a5e20327b58e9da1fb353f3df455f49f0682004863b57a42c82/Easy-QLearning-1.1.0.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-pytest

%description
# EQL

Simplify the creation of QLearning


## Installation

Run the following to install:
```python
pip install Easy-QLearning
```


## Usage
```python
import EQL
####Initialise QTable####
#Mission: go to the house without run over the human
#Game grid
Grid = [#1 = House, -1 = Human
    [0,0,1],
    [0,-1,0],
    [0,0,0]
]

#First car position coordinates
x = 0
y = 2
#Current state
state = 7
#Action list and travel coordinate
actions = [
    [-1, 0], # Up
    [1, 0], #Down
    [0, -1], # Left
    [0, 1] # Right
]

#Make QTable
Qtable = EQL.QLearning(nbAction=4,nbState=10)

####Train the QTable####
#100 games
for _ in range(100):
    #Reset the car position
    x = 0
    y = 2
    #Default state
    state = 7
    #While the car are not in the house
    while x != 2 or y != 0:
        #Display the grid
        print("---------------------")
        yTemp = 0
        for line in Grid:
            xTemp = 0
            for pt in line:
                print("%s\t" % (pt if yTemp != y or xTemp != x else "X"), end="")
                xTemp += 1
            yTemp += 1
            print("")
        #Choose an action
        action = Qtable.takeAction(state,epsilon=0.4)
        #Move the car
        y = max(0, min(y + actions[action][0],2))
        x = max(0, min(x + actions[action][1],2))
        #Calcul the position in the grid (state)
        newState = (y*3+x+1)
        #Get the reward of the position
        reward = Grid[y][x]
        print("state : ", newState)
        print("reward : ", reward)
        #Update Q function
        Qtable.updateQFunction(newState,state,reward)
        #Next state
        state = newState
#Display the QTable
for s in range(0, 9):
    print(s, Qtable.QTable[s])

#Save my QTable in myTable.npz
Qtable.saveQTable("myTable")

#Load my QTable from myTable.npz
Qtable.loadQTable("myTable")
```


```bash
$ pip install -e .[dev]
```



%package -n python3-Easy-QLearning
Summary:	Simplify the creation of QLearning
Provides:	python-Easy-QLearning
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-Easy-QLearning
# EQL

Simplify the creation of QLearning


## Installation

Run the following to install:
```python
pip install Easy-QLearning
```


## Usage
```python
import EQL
####Initialise QTable####
#Mission: go to the house without run over the human
#Game grid
Grid = [#1 = House, -1 = Human
    [0,0,1],
    [0,-1,0],
    [0,0,0]
]

#First car position coordinates
x = 0
y = 2
#Current state
state = 7
#Action list and travel coordinate
actions = [
    [-1, 0], # Up
    [1, 0], #Down
    [0, -1], # Left
    [0, 1] # Right
]

#Make QTable
Qtable = EQL.QLearning(nbAction=4,nbState=10)

####Train the QTable####
#100 games
for _ in range(100):
    #Reset the car position
    x = 0
    y = 2
    #Default state
    state = 7
    #While the car are not in the house
    while x != 2 or y != 0:
        #Display the grid
        print("---------------------")
        yTemp = 0
        for line in Grid:
            xTemp = 0
            for pt in line:
                print("%s\t" % (pt if yTemp != y or xTemp != x else "X"), end="")
                xTemp += 1
            yTemp += 1
            print("")
        #Choose an action
        action = Qtable.takeAction(state,epsilon=0.4)
        #Move the car
        y = max(0, min(y + actions[action][0],2))
        x = max(0, min(x + actions[action][1],2))
        #Calcul the position in the grid (state)
        newState = (y*3+x+1)
        #Get the reward of the position
        reward = Grid[y][x]
        print("state : ", newState)
        print("reward : ", reward)
        #Update Q function
        Qtable.updateQFunction(newState,state,reward)
        #Next state
        state = newState
#Display the QTable
for s in range(0, 9):
    print(s, Qtable.QTable[s])

#Save my QTable in myTable.npz
Qtable.saveQTable("myTable")

#Load my QTable from myTable.npz
Qtable.loadQTable("myTable")
```


```bash
$ pip install -e .[dev]
```



%package help
Summary:	Development documents and examples for Easy-QLearning
Provides:	python3-Easy-QLearning-doc
%description help
# EQL

Simplify the creation of QLearning


## Installation

Run the following to install:
```python
pip install Easy-QLearning
```


## Usage
```python
import EQL
####Initialise QTable####
#Mission: go to the house without run over the human
#Game grid
Grid = [#1 = House, -1 = Human
    [0,0,1],
    [0,-1,0],
    [0,0,0]
]

#First car position coordinates
x = 0
y = 2
#Current state
state = 7
#Action list and travel coordinate
actions = [
    [-1, 0], # Up
    [1, 0], #Down
    [0, -1], # Left
    [0, 1] # Right
]

#Make QTable
Qtable = EQL.QLearning(nbAction=4,nbState=10)

####Train the QTable####
#100 games
for _ in range(100):
    #Reset the car position
    x = 0
    y = 2
    #Default state
    state = 7
    #While the car are not in the house
    while x != 2 or y != 0:
        #Display the grid
        print("---------------------")
        yTemp = 0
        for line in Grid:
            xTemp = 0
            for pt in line:
                print("%s\t" % (pt if yTemp != y or xTemp != x else "X"), end="")
                xTemp += 1
            yTemp += 1
            print("")
        #Choose an action
        action = Qtable.takeAction(state,epsilon=0.4)
        #Move the car
        y = max(0, min(y + actions[action][0],2))
        x = max(0, min(x + actions[action][1],2))
        #Calcul the position in the grid (state)
        newState = (y*3+x+1)
        #Get the reward of the position
        reward = Grid[y][x]
        print("state : ", newState)
        print("reward : ", reward)
        #Update Q function
        Qtable.updateQFunction(newState,state,reward)
        #Next state
        state = newState
#Display the QTable
for s in range(0, 9):
    print(s, Qtable.QTable[s])

#Save my QTable in myTable.npz
Qtable.saveQTable("myTable")

#Load my QTable from myTable.npz
Qtable.loadQTable("myTable")
```


```bash
$ pip install -e .[dev]
```



%prep
%autosetup -n Easy-QLearning-1.1.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-Easy-QLearning -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.0-1
- Package Spec generated