summaryrefslogtreecommitdiff
path: root/python-kami.spec
blob: 14367a587d6cd85de2f4f292a98222f3306585cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
%global _empty_manifest_terminate_build 0
Name:		python-Kami
Version:	0.4.3
Release:	1
Summary:	Forecast sales with Entity Embedding LSTM
License:	MIT
URL:		https://github.com/MacarielAerial
Source0:	https://mirrors.aliyun.com/pypi/web/packages/9d/3b/be3a4187ada38578703bd07e6f2cd69f42598a4885a89d44d56f6d902804/Kami-0.4.3.tar.gz
BuildArch:	noarch


%description
# AM18_SPR20_LondonLAB

## Package Description

The package contains one object **Kami** with four methods in the order of execution:  
1. **Preprocess()**
2. **Analyse(n_sample)**
3. **Vis()**
4. **Forecast(store_list, product_list, start, end)**

To initiate the object **Kami**, the user is required to supply at least these three arguments:  
1. Path to the grouped product sales input data (***input_f_path***)
2. Path to an intermediary folder to store intermediary data (***cache_dir_path***)
3. Path to an output folder to store final predictions (***output_dir_path***)

While **Preprocess** and **Vis** methods are executed without any argument, **Analyse** method can be supplied with an optional argument *n_sample* which is the number of random samples drawn from the predefined training data.

**Forecast** method is required to be supplied with four arguments including:  
1. A list of stores whose sales are predicted (***store_list***)
2. A list of products whose sales are predicted (***product_list***)
3. The start date of the forecast (***start***)
4. The end date of the forecast (***end***)

## Typical Use Case

***
	from Kami import Kami

	obj = Kami(input_f_path = 'PATH_TO_SALES_DATA/SALES_DATA.csv',
			output_dir_path = 'OUTPUT_FOLDER/',
			cache_dir_path = 'CACHE_FOLDER/')
	obj.Preprocess()
	obj.Analyse()
	obj.Vis()
	obj.Forecast(store_list = ['STORE_A', 'STORE_B'],
			product_list = ['PRODUCT_A', 'PRODUCT_B'],
			start = 'MM/DD/YYYY',
			end = 'MM/DD/YYYY')
***

%package -n python3-Kami
Summary:	Forecast sales with Entity Embedding LSTM
Provides:	python-Kami
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-Kami
# AM18_SPR20_LondonLAB

## Package Description

The package contains one object **Kami** with four methods in the order of execution:  
1. **Preprocess()**
2. **Analyse(n_sample)**
3. **Vis()**
4. **Forecast(store_list, product_list, start, end)**

To initiate the object **Kami**, the user is required to supply at least these three arguments:  
1. Path to the grouped product sales input data (***input_f_path***)
2. Path to an intermediary folder to store intermediary data (***cache_dir_path***)
3. Path to an output folder to store final predictions (***output_dir_path***)

While **Preprocess** and **Vis** methods are executed without any argument, **Analyse** method can be supplied with an optional argument *n_sample* which is the number of random samples drawn from the predefined training data.

**Forecast** method is required to be supplied with four arguments including:  
1. A list of stores whose sales are predicted (***store_list***)
2. A list of products whose sales are predicted (***product_list***)
3. The start date of the forecast (***start***)
4. The end date of the forecast (***end***)

## Typical Use Case

***
	from Kami import Kami

	obj = Kami(input_f_path = 'PATH_TO_SALES_DATA/SALES_DATA.csv',
			output_dir_path = 'OUTPUT_FOLDER/',
			cache_dir_path = 'CACHE_FOLDER/')
	obj.Preprocess()
	obj.Analyse()
	obj.Vis()
	obj.Forecast(store_list = ['STORE_A', 'STORE_B'],
			product_list = ['PRODUCT_A', 'PRODUCT_B'],
			start = 'MM/DD/YYYY',
			end = 'MM/DD/YYYY')
***

%package help
Summary:	Development documents and examples for Kami
Provides:	python3-Kami-doc
%description help
# AM18_SPR20_LondonLAB

## Package Description

The package contains one object **Kami** with four methods in the order of execution:  
1. **Preprocess()**
2. **Analyse(n_sample)**
3. **Vis()**
4. **Forecast(store_list, product_list, start, end)**

To initiate the object **Kami**, the user is required to supply at least these three arguments:  
1. Path to the grouped product sales input data (***input_f_path***)
2. Path to an intermediary folder to store intermediary data (***cache_dir_path***)
3. Path to an output folder to store final predictions (***output_dir_path***)

While **Preprocess** and **Vis** methods are executed without any argument, **Analyse** method can be supplied with an optional argument *n_sample* which is the number of random samples drawn from the predefined training data.

**Forecast** method is required to be supplied with four arguments including:  
1. A list of stores whose sales are predicted (***store_list***)
2. A list of products whose sales are predicted (***product_list***)
3. The start date of the forecast (***start***)
4. The end date of the forecast (***end***)

## Typical Use Case

***
	from Kami import Kami

	obj = Kami(input_f_path = 'PATH_TO_SALES_DATA/SALES_DATA.csv',
			output_dir_path = 'OUTPUT_FOLDER/',
			cache_dir_path = 'CACHE_FOLDER/')
	obj.Preprocess()
	obj.Analyse()
	obj.Vis()
	obj.Forecast(store_list = ['STORE_A', 'STORE_B'],
			product_list = ['PRODUCT_A', 'PRODUCT_B'],
			start = 'MM/DD/YYYY',
			end = 'MM/DD/YYYY')
***

%prep
%autosetup -n Kami-0.4.3

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-Kami -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.3-1
- Package Spec generated