1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
|
%global _empty_manifest_terminate_build 0
Name: python-OpenAttack
Version: 2.1.1
Release: 1
Summary: OpenAttack
License: MIT License
URL: https://github.com/thunlp/OpenAttack
Source0: https://mirrors.aliyun.com/pypi/web/packages/16/ca/bf6ce04d5e7d746144a9f01fc7709ed346c6e26dbdcaef6231c946bcd518/OpenAttack-2.1.1.tar.gz
BuildArch: noarch
Requires: python3-nltk
Requires: python3-numpy
Requires: python3-datasets
Requires: python3-tqdm
Requires: python3-transformers
Requires: python3-torch
%description
<p align="center">
<img src="docs/source/images/logo.svg" width = "400" alt="OpenAttack Logo" align=center />
</p>
<p align="center">
<a target="_blank">
<img src="https://github.com/thunlp/OpenAttack/workflows/Test/badge.svg?branch=master" alt="Github Runner Covergae Status">
</a>
<a href="https://openattack.readthedocs.io/" target="_blank">
<img src="https://readthedocs.org/projects/openattack/badge/?version=latest" alt="ReadTheDoc Status">
</a>
<a href="https://pypi.org/project/OpenAttack/" target="_blank">
<img src="https://img.shields.io/pypi/v/OpenAttack?label=pypi" alt="PyPI version">
</a>
<a href="https://github.com/thunlp/OpenAttack/releases" target="_blank">
<img src="https://img.shields.io/github/v/release/thunlp/OpenAttack" alt="GitHub release (latest by date)">
</a>
<a target="_blank">
<img alt="GitHub" src="https://img.shields.io/github/license/thunlp/OpenAttack">
</a>
<a target="_blank">
<img src="https://img.shields.io/badge/PRs-Welcome-red" alt="PRs are Welcome">
</a>
<br><br>
<a href="https://openattack.readthedocs.io/" target="_blank">Documentation</a> • <a href="#features--uses">Features & Uses</a> • <a href="#usage-examples">Usage Examples</a> • <a href="#attack-models">Attack Models</a> • <a href="#toolkit-design">Toolkit Design</a>
<br>
</p>
OpenAttack is an open-source Python-based textual adversarial attack toolkit, which handles the whole process of textual adversarial attacking, including preprocessing text, accessing the victim model, generating adversarial examples and evaluation.
## Features & Uses
#### OpenAttack has the following features:
⭐️ **Support for all attack types**. OpenAttack supports all types of attacks including sentence-/word-/character-level perturbations and gradient-/score-/decision-based/blind attack models;
⭐️ **Multilinguality**. OpenAttack supports English and Chinese now. Its extensible design enables quick support for more languages;
⭐️ **Parallel processing**. OpenAttack provides support for multi-process running of attack models to improve attack efficiency;
⭐️ **Compatibility with 🤗 Hugging Face**. OpenAttack is fully integrated with 🤗 [Transformers](https://github.com/huggingface/transformers) and [Datasets](https://github.com/huggingface/datasets) libraries;
⭐️ **Great extensibility**. You can easily attack a customized <u>victim model</u> on any customized <u>dataset</u> or develop and evaluate a customized <u>attack model</u>.
#### OpenAttack has a wide range of uses, including:
✅ Providing various handy **baselines** for attack models;
✅ Comprehensively **evaluating** attack models using its thorough evaluation metrics;
✅ Assisting in quick development of **new attack models** with the help of its common attack components;
✅ Evaluating the **robustness** of a machine learning model against various adversarial attacks;
✅ Conducting **adversarial training** to improve robustness of a machine learning model by enriching the training data with generated adversarial examples.
## Installation
#### 1. Using `pip` (recommended)
```bash
pip install OpenAttack
```
#### 2. Cloning this repo
```bash
git clone https://github.com/thunlp/OpenAttack.git
cd OpenAttack
python setup.py install
```
After installation, you can try running `demo.py` to check if OpenAttack works well:
```
python demo.py
```

## Usage Examples
#### Attack Built-in Victim Models
OpenAttack builds in some commonly used NLP models like BERT ([Devlin et al. 2018](https://arxiv.org/abs/1810.04805)) and RoBERTa ([Liu et al. 2019](https://arxiv.org/abs/1907.11692)) that have been fine-tuned on some commonly used datasets (such as [SST-2](https://nlp.stanford.edu/sentiment/treebank.html)). You can effortlessly conduct adversarial attacks against these built-in victim models.
The following code snippet shows how to use PWWS, a greedy algorithm-based attack model ([Ren et al., 2019](https://www.aclweb.org/anthology/P19-1103.pdf)), to attack BERT on the SST-2 dataset (the complete executable code is [here](./examples/workflow.py)).
```python
import OpenAttack as oa
import datasets # use the Hugging Face's datasets library
# change the SST dataset into 2-class
def dataset_mapping(x):
return {
"x": x["sentence"],
"y": 1 if x["label"] > 0.5 else 0,
}
# choose a trained victim classification model
victim = oa.DataManager.loadVictim("BERT.SST")
# choose 20 examples from SST-2 as the evaluation data
dataset = datasets.load_dataset("sst", split="train[:20]").map(function=dataset_mapping)
# choose PWWS as the attacker and initialize it with default parameters
attacker = oa.attackers.PWWSAttacker()
# prepare for attacking
attack_eval = OpenAttack.AttackEval(attacker, victim)
# launch attacks and print attack results
attack_eval.eval(dataset, visualize=True)
```
<details>
<summary><strong>Customized Victim Model</strong></summary>
The following code snippet shows how to use PWWS to attack a **customized sentiment analysis model** (a statistical model built in NLTK) on SST-2 (the complete executable code is [here](./examples/custom_victim.py)).
```python
import OpenAttack as oa
import numpy as np
import datasets
import nltk
from nltk.sentiment.vader import SentimentIntensityAnalyzer
# configure access interface of the customized victim model by extending OpenAttack.Classifier.
class MyClassifier(oa.Classifier):
def __init__(self):
# nltk.sentiment.vader.SentimentIntensityAnalyzer is a traditional sentiment classification model.
nltk.download('vader_lexicon')
self.model = SentimentIntensityAnalyzer()
def get_pred(self, input_):
return self.get_prob(input_).argmax(axis=1)
# access to the classification probability scores with respect input sentences
def get_prob(self, input_):
ret = []
for sent in input_:
# SentimentIntensityAnalyzer calculates scores of “neg” and “pos” for each instance
res = self.model.polarity_scores(sent)
# we use 𝑠𝑜𝑐𝑟𝑒_𝑝𝑜𝑠 / (𝑠𝑐𝑜𝑟𝑒_𝑛𝑒𝑔 + 𝑠𝑐𝑜𝑟𝑒_𝑝𝑜𝑠) to represent the probability of positive sentiment
# Adding 10^−6 is a trick to avoid dividing by zero.
prob = (res["pos"] + 1e-6) / (res["neg"] + res["pos"] + 2e-6)
ret.append(np.array([1 - prob, prob]))
# The get_prob method finally returns a np.ndarray of shape (len(input_), 2). See Classifier for detail.
return np.array(ret)
def dataset_mapping(x):
return {
"x": x["sentence"],
"y": 1 if x["label"] > 0.5 else 0,
}
# load some examples of SST-2 for evaluation
dataset = datasets.load_dataset("sst", split="train[:20]").map(function=dataset_mapping)
# choose the costomized classifier as the victim model
victim = MyClassifier()
# choose PWWS as the attacker and initialize it with default parameters
attacker = oa.attackers.PWWSAttacker()
# prepare for attacking
attack_eval = oa.AttackEval(attacker, victim)
# launch attacks and print attack results
attack_eval.eval(dataset, visualize=True)
```
</details>
<details>
<summary><strong>Customized Dataset</strong></summary>
The following code snippet shows how to use PWWS to attack an existing fine-tuned sentiment analysis model on a **customized** dataset (the complete executable code is [here](./examples/custom_dataset.py)).
```python
import OpenAttack as oa
import transformers
import datasets
# load a fine-tuned sentiment analysis model from Transformers (you can also use our fine-tuned Victim.BERT.SST)
tokenizer = transformers.AutoTokenizer.from_pretrained("echarlaix/bert-base-uncased-sst2-acc91.1-d37-hybrid")
model = transformers.AutoModelForSequenceClassification.from_pretrained("echarlaix/bert-base-uncased-sst2-acc91.1-d37-hybrid", num_labels=2, output_hidden_states=False)
victim = oa.classifiers.TransformersClassifier(model, tokenizer, model.bert.embeddings.word_embeddings)
# choose PWWS as the attacker and initialize it with default parameters
attacker = oa.attackers.PWWSAttacker()
# create your customized dataset
dataset = datasets.Dataset.from_dict({
"x": [
"I hate this movie.",
"I like this apple."
],
"y": [
0, # 0 for negative
1, # 1 for positive
]
})
# prepare for attacking
attack_eval = oa.AttackEval(attacker, victim, metrics = [oa.metric.EditDistance(), oa.metric.ModificationRate()])
# launch attacks and print attack results
attack_eval.eval(dataset, visualize=True)
```
</details>
<details>
<summary><strong>Multiprocessing</strong></summary>
OpenAttack supports convenient multiprocessing to accelerate the process of adversarial attacks. The following code snippet shows how to use multiprocessing in adversarial attacks with Genetic ([Alzantot et al. 2018](https://www.aclweb.org/anthology/D18-1316)), a genetic algorithm-based attack model (the complete executable code is [here](./examples/multiprocess_eval.py)).
```python
import OpenAttack as oa
import datasets
def dataset_mapping(x):
return {
"x": x["sentence"],
"y": 1 if x["label"] > 0.5 else 0,
}
victim = oa.loadVictim("BERT.SST")
dataset = datasets.load_dataset("sst", split="train[:20]").map(function=dataset_mapping)
attacker = oa.attackers.GeneticAttacker()
attack_eval = oa.AttackEval(attacker, victim)
# Using multiprocessing simply by specify num_workers
attack_eval.eval(dataset, visualize=True, num_workers=4)
```
</details>
<details>
<summary><strong>Chinese Attack</strong></summary>
OpenAttack now supports adversarial attacks against English and Chinese victim models. [Here](./examples/chinese.py) is an example code of conducting adversarial attacks against a Chinese review classification model using PWWS.
</details>
<details>
<summary><strong>Customized Attack Model</strong></summary>
OpenAttack incorporates many handy components that can be easily assembled into new attack models. [Here](./examples/custom_attacker.py) gives an example of how to design a simple attack model that shuffles the tokens in the original sentence.
</details>
<details>
<summary><strong>Adversarial Training</strong></summary>
OpenAttack can easily generate adversarial examples by attacking instances in the training set, which can be added to original training data set to retrain a more robust victim model, i.e., adversarial training. [Here](./examples/adversarial_training.py) gives an example of how to conduct adversarial training with OpenAttack.
</details>
<details>
<summary><strong>More Examples</strong></summary>
- Attack Sentence Pair Classification Models. In addition to single sentence classification models, OpenAttack support attacks against sentence pair classification models. [Here](./examples/nli_attack.py) is an example code of conducting adversarial attacks against an NLI model with OpenAttack.
- Customized Evaluation Metric. OpenAttack supports designing a customized adversarial attack evaluation metric. [Here](./examples/custom_eval.py) gives an example of how to add a customized evaluation metric and use it to evaluate adversarial attacks.
</details>
## Attack Models
According to the level of perturbations imposed on original input, textual adversarial attack models can be categorized into sentence-level, word-level, character-level attack models.
According to the accessibility to the victim model, textual adversarial attack models can be categorized into `gradient`-based, `score`-based, `decision`-based and `blind` attack models.
> [TAADPapers](https://github.com/thunlp/TAADpapers) is a paper list which summarizes almost all the papers concerning textual adversarial attack and defense. You can have a look at this list to find more attack models.
Currently OpenAttack includes 15 typical attack models against text classification models that cover **all** attack types.
Here is the list of currently involved attack models.
- Sentence-level
- (SEA) **Semantically Equivalent Adversarial Rules for Debugging NLP Models**. *Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin*. ACL 2018. `decision` [[pdf](https://aclweb.org/anthology/P18-1079)] [[code](https://github.com/marcotcr/sears)]
- (SCPN) **Adversarial Example Generation with Syntactically Controlled Paraphrase Networks**. *Mohit Iyyer, John Wieting, Kevin Gimpel, Luke Zettlemoyer*. NAACL-HLT 2018. `blind` [[pdf](https://www.aclweb.org/anthology/N18-1170)] [[code&data](https://github.com/miyyer/scpn)]
- (GAN) **Generating Natural Adversarial Examples**. *Zhengli Zhao, Dheeru Dua, Sameer Singh*. ICLR 2018. `decision` [[pdf](https://arxiv.org/pdf/1710.11342.pdf)] [[code](https://github.com/zhengliz/natural-adversary)]
- Word-level
- (TextFooler) **Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment**. *Di Jin, Zhijing Jin, Joey Tianyi Zhou, Peter Szolovits*. AAAI-20. `score` [[pdf](https://arxiv.org/pdf/1907.11932v4)] [[code](https://github.com/wqj111186/TextFooler)]
- (PWWS) **Generating Natural Language Adversarial Examples through Probability Weighted Word Saliency**. *Shuhuai Ren, Yihe Deng, Kun He, Wanxiang Che*. ACL 2019. `score` [[pdf](https://www.aclweb.org/anthology/P19-1103.pdf)] [[code](https://github.com/JHL-HUST/PWWS/)]
- (Genetic) **Generating Natural Language Adversarial Examples**. *Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava, Kai-Wei Chang*. EMNLP 2018. `score` [[pdf](https://www.aclweb.org/anthology/D18-1316)] [[code](https://github.com/nesl/nlp_adversarial_examples)]
- (SememePSO) **Word-level Textual Adversarial Attacking as Combinatorial Optimization**. *Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qun Liu and Maosong Sun*. ACL 2020. `score` [[pdf](https://www.aclweb.org/anthology/2020.acl-main.540.pdf)] [[code](https://github.com/thunlp/SememePSO-Attack)]
- (BERT-ATTACK) **BERT-ATTACK: Adversarial Attack Against BERT Using BERT**. *Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, Xipeng Qiu*. EMNLP 2020. `score` [[pdf](https://www.aclweb.org/anthology/2020.emnlp-main.500.pdf)] [[code](https://github.com/LinyangLee/BERT-Attack)]
- (BAE) **BAE: BERT-based Adversarial Examples for Text Classification**. *Siddhant Garg, Goutham Ramakrishnan. EMNLP 2020*. `score` [[pdf](https://www.aclweb.org/anthology/2020.emnlp-main.498.pdf)] [[code](https://github.com/QData/TextAttack/blob/master/textattack/attack_recipes/bae_garg_2019.py)]
- (FD) **Crafting Adversarial Input Sequences For Recurrent Neural Networks**. *Nicolas Papernot, Patrick McDaniel, Ananthram Swami, Richard Harang*. MILCOM 2016. `gradient` [[pdf](https://arxiv.org/pdf/1604.08275.pdf)]
- Word/Char-level
- (TextBugger) **TEXTBUGGER: Generating Adversarial Text Against Real-world Applications**. *Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, Ting Wang*. NDSS 2019. `gradient` `score` [[pdf](https://arxiv.org/pdf/1812.05271.pdf)]
- (UAT) **Universal Adversarial Triggers for Attacking and Analyzing NLP.** *Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, Sameer Singh*. EMNLP-IJCNLP 2019. `gradient` [[pdf](https://arxiv.org/pdf/1908.07125.pdf)] [[code](https://github.com/Eric-Wallace/universal-triggers)] [[website](http://www.ericswallace.com/triggers)]
- (HotFlip) **HotFlip: White-Box Adversarial Examples for Text Classification**. *Javid Ebrahimi, Anyi Rao, Daniel Lowd, Dejing Dou*. ACL 2018. `gradient` [[pdf](https://www.aclweb.org/anthology/P18-2006)] [[code](https://github.com/AnyiRao/WordAdver)]
- Char-level
- (VIPER) **Text Processing Like Humans Do: Visually Attacking and Shielding NLP Systems**. *Steffen Eger, Gözde Gül ¸Sahin, Andreas Rücklé, Ji-Ung Lee, Claudia Schulz, Mohsen Mesgar, Krishnkant Swarnkar, Edwin Simpson, Iryna Gurevych*. NAACL-HLT 2019. `score` [[pdf](https://www.aclweb.org/anthology/N19-1165)] [[code&data](https://github.com/UKPLab/naacl2019-like-humans-visual-attacks)]
- (DeepWordBug) **Black-box Generation of Adversarial Text Sequences to Evade Deep Learning Classifiers**. *Ji Gao, Jack Lanchantin, Mary Lou Soffa, Yanjun Qi*. IEEE SPW 2018. `score` [[pdf](https://ieeexplore.ieee.org/document/8424632)] [[code](https://github.com/QData/deepWordBug)]
The following table illustrates the comparison of the attack models.
| Model | Accessibility | Perturbation | Main Idea |
| :---------: | :-------------: | :----------: | :-------------------------------------------------- |
| SEA | Decision | Sentence | Rule-based paraphrasing |
| SCPN | Blind | Sentence | Paraphrasing |
| GAN | Decision | Sentence | Text generation by encoder-decoder |
| TextFooler | Score | Word | Greedy word substitution |
| PWWS | Score | Word | Greedy word substitution |
| Genetic | Score | Word | Genetic algorithm-based word substitution |
| SememePSO | Score | Word | Particle Swarm Optimization-based word substitution |
| BERT-ATTACK | Score | Word | Greedy contextualized word substitution |
| BAE | Score | Word | Greedy contextualized word substitution and insertion |
| FD | Gradient | Word | Gradient-based word substitution |
| TextBugger | Gradient, Score | Word+Char | Greedy word substitution and character manipulation |
| UAT | Gradient | Word, Char | Gradient-based word or character manipulation |
| HotFlip | Gradient | Word, Char | Gradient-based word or character substitution |
| VIPER | Blind | Char | Visually similar character substitution |
| DeepWordBug | Score | Char | Greedy character manipulation |
## Toolkit Design
Considering the significant distinctions among different attack models, we leave considerable freedom for the skeleton design of attack models, and focus more on streamlining the general processing of adversarial attacking and the common components used in attack models.
OpenAttack has 7 main modules:
<img src="./docs/source/images/toolkit_framework.png" alt="toolkit_framework" style="zoom:40%;" />
* **TextProcessor**: processing the original text sequence to assist attack models in generating adversarial examples;
* **Victim**: wrapping victim models;
* **Attacker**: comprising various attack models;
* **AttackAssist**: packing different word/character substitution methods that are used in word-/character-level attack models and some other components used in sentence-level attack models like the paraphrasing model;
* **Metric**: providing several adversarial example quality metrics that can serve as either the constraints on the adversarial examples during attacking or evaluation metrics for evaluating adversarial attacks;
* **AttackEval**: evaluating textual adversarial attacks from attack effectiveness, adversarial example quality and attack efficiency;
* **DataManager**: managing all data and saved models that are used in other modules.
## Citation
Please cite our [paper](https://aclanthology.org/2021.acl-demo.43.pdf) if you use this toolkit:
```
@inproceedings{zeng2020openattack,
title={{Openattack: An open-source textual adversarial attack toolkit}},
author={Zeng, Guoyang and Qi, Fanchao and Zhou, Qianrui and Zhang, Tingji and Hou, Bairu and Zang, Yuan and Liu, Zhiyuan and Sun, Maosong},
booktitle={Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations},
pages={363--371},
year={2021},
url={https://aclanthology.org/2021.acl-demo.43},
doi={10.18653/v1/2021.acl-demo.43}
}
```
## Contributors
We thank all the contributors to this project. And more contributions are very welcome.
<a href="https://github.com/thunlp/OpenAttack/graphs/contributors">
<img src="https://contrib.rocks/image?repo=thunlp/OpenAttack"/></a>
%package -n python3-OpenAttack
Summary: OpenAttack
Provides: python-OpenAttack
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-OpenAttack
<p align="center">
<img src="docs/source/images/logo.svg" width = "400" alt="OpenAttack Logo" align=center />
</p>
<p align="center">
<a target="_blank">
<img src="https://github.com/thunlp/OpenAttack/workflows/Test/badge.svg?branch=master" alt="Github Runner Covergae Status">
</a>
<a href="https://openattack.readthedocs.io/" target="_blank">
<img src="https://readthedocs.org/projects/openattack/badge/?version=latest" alt="ReadTheDoc Status">
</a>
<a href="https://pypi.org/project/OpenAttack/" target="_blank">
<img src="https://img.shields.io/pypi/v/OpenAttack?label=pypi" alt="PyPI version">
</a>
<a href="https://github.com/thunlp/OpenAttack/releases" target="_blank">
<img src="https://img.shields.io/github/v/release/thunlp/OpenAttack" alt="GitHub release (latest by date)">
</a>
<a target="_blank">
<img alt="GitHub" src="https://img.shields.io/github/license/thunlp/OpenAttack">
</a>
<a target="_blank">
<img src="https://img.shields.io/badge/PRs-Welcome-red" alt="PRs are Welcome">
</a>
<br><br>
<a href="https://openattack.readthedocs.io/" target="_blank">Documentation</a> • <a href="#features--uses">Features & Uses</a> • <a href="#usage-examples">Usage Examples</a> • <a href="#attack-models">Attack Models</a> • <a href="#toolkit-design">Toolkit Design</a>
<br>
</p>
OpenAttack is an open-source Python-based textual adversarial attack toolkit, which handles the whole process of textual adversarial attacking, including preprocessing text, accessing the victim model, generating adversarial examples and evaluation.
## Features & Uses
#### OpenAttack has the following features:
⭐️ **Support for all attack types**. OpenAttack supports all types of attacks including sentence-/word-/character-level perturbations and gradient-/score-/decision-based/blind attack models;
⭐️ **Multilinguality**. OpenAttack supports English and Chinese now. Its extensible design enables quick support for more languages;
⭐️ **Parallel processing**. OpenAttack provides support for multi-process running of attack models to improve attack efficiency;
⭐️ **Compatibility with 🤗 Hugging Face**. OpenAttack is fully integrated with 🤗 [Transformers](https://github.com/huggingface/transformers) and [Datasets](https://github.com/huggingface/datasets) libraries;
⭐️ **Great extensibility**. You can easily attack a customized <u>victim model</u> on any customized <u>dataset</u> or develop and evaluate a customized <u>attack model</u>.
#### OpenAttack has a wide range of uses, including:
✅ Providing various handy **baselines** for attack models;
✅ Comprehensively **evaluating** attack models using its thorough evaluation metrics;
✅ Assisting in quick development of **new attack models** with the help of its common attack components;
✅ Evaluating the **robustness** of a machine learning model against various adversarial attacks;
✅ Conducting **adversarial training** to improve robustness of a machine learning model by enriching the training data with generated adversarial examples.
## Installation
#### 1. Using `pip` (recommended)
```bash
pip install OpenAttack
```
#### 2. Cloning this repo
```bash
git clone https://github.com/thunlp/OpenAttack.git
cd OpenAttack
python setup.py install
```
After installation, you can try running `demo.py` to check if OpenAttack works well:
```
python demo.py
```

## Usage Examples
#### Attack Built-in Victim Models
OpenAttack builds in some commonly used NLP models like BERT ([Devlin et al. 2018](https://arxiv.org/abs/1810.04805)) and RoBERTa ([Liu et al. 2019](https://arxiv.org/abs/1907.11692)) that have been fine-tuned on some commonly used datasets (such as [SST-2](https://nlp.stanford.edu/sentiment/treebank.html)). You can effortlessly conduct adversarial attacks against these built-in victim models.
The following code snippet shows how to use PWWS, a greedy algorithm-based attack model ([Ren et al., 2019](https://www.aclweb.org/anthology/P19-1103.pdf)), to attack BERT on the SST-2 dataset (the complete executable code is [here](./examples/workflow.py)).
```python
import OpenAttack as oa
import datasets # use the Hugging Face's datasets library
# change the SST dataset into 2-class
def dataset_mapping(x):
return {
"x": x["sentence"],
"y": 1 if x["label"] > 0.5 else 0,
}
# choose a trained victim classification model
victim = oa.DataManager.loadVictim("BERT.SST")
# choose 20 examples from SST-2 as the evaluation data
dataset = datasets.load_dataset("sst", split="train[:20]").map(function=dataset_mapping)
# choose PWWS as the attacker and initialize it with default parameters
attacker = oa.attackers.PWWSAttacker()
# prepare for attacking
attack_eval = OpenAttack.AttackEval(attacker, victim)
# launch attacks and print attack results
attack_eval.eval(dataset, visualize=True)
```
<details>
<summary><strong>Customized Victim Model</strong></summary>
The following code snippet shows how to use PWWS to attack a **customized sentiment analysis model** (a statistical model built in NLTK) on SST-2 (the complete executable code is [here](./examples/custom_victim.py)).
```python
import OpenAttack as oa
import numpy as np
import datasets
import nltk
from nltk.sentiment.vader import SentimentIntensityAnalyzer
# configure access interface of the customized victim model by extending OpenAttack.Classifier.
class MyClassifier(oa.Classifier):
def __init__(self):
# nltk.sentiment.vader.SentimentIntensityAnalyzer is a traditional sentiment classification model.
nltk.download('vader_lexicon')
self.model = SentimentIntensityAnalyzer()
def get_pred(self, input_):
return self.get_prob(input_).argmax(axis=1)
# access to the classification probability scores with respect input sentences
def get_prob(self, input_):
ret = []
for sent in input_:
# SentimentIntensityAnalyzer calculates scores of “neg” and “pos” for each instance
res = self.model.polarity_scores(sent)
# we use 𝑠𝑜𝑐𝑟𝑒_𝑝𝑜𝑠 / (𝑠𝑐𝑜𝑟𝑒_𝑛𝑒𝑔 + 𝑠𝑐𝑜𝑟𝑒_𝑝𝑜𝑠) to represent the probability of positive sentiment
# Adding 10^−6 is a trick to avoid dividing by zero.
prob = (res["pos"] + 1e-6) / (res["neg"] + res["pos"] + 2e-6)
ret.append(np.array([1 - prob, prob]))
# The get_prob method finally returns a np.ndarray of shape (len(input_), 2). See Classifier for detail.
return np.array(ret)
def dataset_mapping(x):
return {
"x": x["sentence"],
"y": 1 if x["label"] > 0.5 else 0,
}
# load some examples of SST-2 for evaluation
dataset = datasets.load_dataset("sst", split="train[:20]").map(function=dataset_mapping)
# choose the costomized classifier as the victim model
victim = MyClassifier()
# choose PWWS as the attacker and initialize it with default parameters
attacker = oa.attackers.PWWSAttacker()
# prepare for attacking
attack_eval = oa.AttackEval(attacker, victim)
# launch attacks and print attack results
attack_eval.eval(dataset, visualize=True)
```
</details>
<details>
<summary><strong>Customized Dataset</strong></summary>
The following code snippet shows how to use PWWS to attack an existing fine-tuned sentiment analysis model on a **customized** dataset (the complete executable code is [here](./examples/custom_dataset.py)).
```python
import OpenAttack as oa
import transformers
import datasets
# load a fine-tuned sentiment analysis model from Transformers (you can also use our fine-tuned Victim.BERT.SST)
tokenizer = transformers.AutoTokenizer.from_pretrained("echarlaix/bert-base-uncased-sst2-acc91.1-d37-hybrid")
model = transformers.AutoModelForSequenceClassification.from_pretrained("echarlaix/bert-base-uncased-sst2-acc91.1-d37-hybrid", num_labels=2, output_hidden_states=False)
victim = oa.classifiers.TransformersClassifier(model, tokenizer, model.bert.embeddings.word_embeddings)
# choose PWWS as the attacker and initialize it with default parameters
attacker = oa.attackers.PWWSAttacker()
# create your customized dataset
dataset = datasets.Dataset.from_dict({
"x": [
"I hate this movie.",
"I like this apple."
],
"y": [
0, # 0 for negative
1, # 1 for positive
]
})
# prepare for attacking
attack_eval = oa.AttackEval(attacker, victim, metrics = [oa.metric.EditDistance(), oa.metric.ModificationRate()])
# launch attacks and print attack results
attack_eval.eval(dataset, visualize=True)
```
</details>
<details>
<summary><strong>Multiprocessing</strong></summary>
OpenAttack supports convenient multiprocessing to accelerate the process of adversarial attacks. The following code snippet shows how to use multiprocessing in adversarial attacks with Genetic ([Alzantot et al. 2018](https://www.aclweb.org/anthology/D18-1316)), a genetic algorithm-based attack model (the complete executable code is [here](./examples/multiprocess_eval.py)).
```python
import OpenAttack as oa
import datasets
def dataset_mapping(x):
return {
"x": x["sentence"],
"y": 1 if x["label"] > 0.5 else 0,
}
victim = oa.loadVictim("BERT.SST")
dataset = datasets.load_dataset("sst", split="train[:20]").map(function=dataset_mapping)
attacker = oa.attackers.GeneticAttacker()
attack_eval = oa.AttackEval(attacker, victim)
# Using multiprocessing simply by specify num_workers
attack_eval.eval(dataset, visualize=True, num_workers=4)
```
</details>
<details>
<summary><strong>Chinese Attack</strong></summary>
OpenAttack now supports adversarial attacks against English and Chinese victim models. [Here](./examples/chinese.py) is an example code of conducting adversarial attacks against a Chinese review classification model using PWWS.
</details>
<details>
<summary><strong>Customized Attack Model</strong></summary>
OpenAttack incorporates many handy components that can be easily assembled into new attack models. [Here](./examples/custom_attacker.py) gives an example of how to design a simple attack model that shuffles the tokens in the original sentence.
</details>
<details>
<summary><strong>Adversarial Training</strong></summary>
OpenAttack can easily generate adversarial examples by attacking instances in the training set, which can be added to original training data set to retrain a more robust victim model, i.e., adversarial training. [Here](./examples/adversarial_training.py) gives an example of how to conduct adversarial training with OpenAttack.
</details>
<details>
<summary><strong>More Examples</strong></summary>
- Attack Sentence Pair Classification Models. In addition to single sentence classification models, OpenAttack support attacks against sentence pair classification models. [Here](./examples/nli_attack.py) is an example code of conducting adversarial attacks against an NLI model with OpenAttack.
- Customized Evaluation Metric. OpenAttack supports designing a customized adversarial attack evaluation metric. [Here](./examples/custom_eval.py) gives an example of how to add a customized evaluation metric and use it to evaluate adversarial attacks.
</details>
## Attack Models
According to the level of perturbations imposed on original input, textual adversarial attack models can be categorized into sentence-level, word-level, character-level attack models.
According to the accessibility to the victim model, textual adversarial attack models can be categorized into `gradient`-based, `score`-based, `decision`-based and `blind` attack models.
> [TAADPapers](https://github.com/thunlp/TAADpapers) is a paper list which summarizes almost all the papers concerning textual adversarial attack and defense. You can have a look at this list to find more attack models.
Currently OpenAttack includes 15 typical attack models against text classification models that cover **all** attack types.
Here is the list of currently involved attack models.
- Sentence-level
- (SEA) **Semantically Equivalent Adversarial Rules for Debugging NLP Models**. *Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin*. ACL 2018. `decision` [[pdf](https://aclweb.org/anthology/P18-1079)] [[code](https://github.com/marcotcr/sears)]
- (SCPN) **Adversarial Example Generation with Syntactically Controlled Paraphrase Networks**. *Mohit Iyyer, John Wieting, Kevin Gimpel, Luke Zettlemoyer*. NAACL-HLT 2018. `blind` [[pdf](https://www.aclweb.org/anthology/N18-1170)] [[code&data](https://github.com/miyyer/scpn)]
- (GAN) **Generating Natural Adversarial Examples**. *Zhengli Zhao, Dheeru Dua, Sameer Singh*. ICLR 2018. `decision` [[pdf](https://arxiv.org/pdf/1710.11342.pdf)] [[code](https://github.com/zhengliz/natural-adversary)]
- Word-level
- (TextFooler) **Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment**. *Di Jin, Zhijing Jin, Joey Tianyi Zhou, Peter Szolovits*. AAAI-20. `score` [[pdf](https://arxiv.org/pdf/1907.11932v4)] [[code](https://github.com/wqj111186/TextFooler)]
- (PWWS) **Generating Natural Language Adversarial Examples through Probability Weighted Word Saliency**. *Shuhuai Ren, Yihe Deng, Kun He, Wanxiang Che*. ACL 2019. `score` [[pdf](https://www.aclweb.org/anthology/P19-1103.pdf)] [[code](https://github.com/JHL-HUST/PWWS/)]
- (Genetic) **Generating Natural Language Adversarial Examples**. *Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava, Kai-Wei Chang*. EMNLP 2018. `score` [[pdf](https://www.aclweb.org/anthology/D18-1316)] [[code](https://github.com/nesl/nlp_adversarial_examples)]
- (SememePSO) **Word-level Textual Adversarial Attacking as Combinatorial Optimization**. *Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qun Liu and Maosong Sun*. ACL 2020. `score` [[pdf](https://www.aclweb.org/anthology/2020.acl-main.540.pdf)] [[code](https://github.com/thunlp/SememePSO-Attack)]
- (BERT-ATTACK) **BERT-ATTACK: Adversarial Attack Against BERT Using BERT**. *Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, Xipeng Qiu*. EMNLP 2020. `score` [[pdf](https://www.aclweb.org/anthology/2020.emnlp-main.500.pdf)] [[code](https://github.com/LinyangLee/BERT-Attack)]
- (BAE) **BAE: BERT-based Adversarial Examples for Text Classification**. *Siddhant Garg, Goutham Ramakrishnan. EMNLP 2020*. `score` [[pdf](https://www.aclweb.org/anthology/2020.emnlp-main.498.pdf)] [[code](https://github.com/QData/TextAttack/blob/master/textattack/attack_recipes/bae_garg_2019.py)]
- (FD) **Crafting Adversarial Input Sequences For Recurrent Neural Networks**. *Nicolas Papernot, Patrick McDaniel, Ananthram Swami, Richard Harang*. MILCOM 2016. `gradient` [[pdf](https://arxiv.org/pdf/1604.08275.pdf)]
- Word/Char-level
- (TextBugger) **TEXTBUGGER: Generating Adversarial Text Against Real-world Applications**. *Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, Ting Wang*. NDSS 2019. `gradient` `score` [[pdf](https://arxiv.org/pdf/1812.05271.pdf)]
- (UAT) **Universal Adversarial Triggers for Attacking and Analyzing NLP.** *Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, Sameer Singh*. EMNLP-IJCNLP 2019. `gradient` [[pdf](https://arxiv.org/pdf/1908.07125.pdf)] [[code](https://github.com/Eric-Wallace/universal-triggers)] [[website](http://www.ericswallace.com/triggers)]
- (HotFlip) **HotFlip: White-Box Adversarial Examples for Text Classification**. *Javid Ebrahimi, Anyi Rao, Daniel Lowd, Dejing Dou*. ACL 2018. `gradient` [[pdf](https://www.aclweb.org/anthology/P18-2006)] [[code](https://github.com/AnyiRao/WordAdver)]
- Char-level
- (VIPER) **Text Processing Like Humans Do: Visually Attacking and Shielding NLP Systems**. *Steffen Eger, Gözde Gül ¸Sahin, Andreas Rücklé, Ji-Ung Lee, Claudia Schulz, Mohsen Mesgar, Krishnkant Swarnkar, Edwin Simpson, Iryna Gurevych*. NAACL-HLT 2019. `score` [[pdf](https://www.aclweb.org/anthology/N19-1165)] [[code&data](https://github.com/UKPLab/naacl2019-like-humans-visual-attacks)]
- (DeepWordBug) **Black-box Generation of Adversarial Text Sequences to Evade Deep Learning Classifiers**. *Ji Gao, Jack Lanchantin, Mary Lou Soffa, Yanjun Qi*. IEEE SPW 2018. `score` [[pdf](https://ieeexplore.ieee.org/document/8424632)] [[code](https://github.com/QData/deepWordBug)]
The following table illustrates the comparison of the attack models.
| Model | Accessibility | Perturbation | Main Idea |
| :---------: | :-------------: | :----------: | :-------------------------------------------------- |
| SEA | Decision | Sentence | Rule-based paraphrasing |
| SCPN | Blind | Sentence | Paraphrasing |
| GAN | Decision | Sentence | Text generation by encoder-decoder |
| TextFooler | Score | Word | Greedy word substitution |
| PWWS | Score | Word | Greedy word substitution |
| Genetic | Score | Word | Genetic algorithm-based word substitution |
| SememePSO | Score | Word | Particle Swarm Optimization-based word substitution |
| BERT-ATTACK | Score | Word | Greedy contextualized word substitution |
| BAE | Score | Word | Greedy contextualized word substitution and insertion |
| FD | Gradient | Word | Gradient-based word substitution |
| TextBugger | Gradient, Score | Word+Char | Greedy word substitution and character manipulation |
| UAT | Gradient | Word, Char | Gradient-based word or character manipulation |
| HotFlip | Gradient | Word, Char | Gradient-based word or character substitution |
| VIPER | Blind | Char | Visually similar character substitution |
| DeepWordBug | Score | Char | Greedy character manipulation |
## Toolkit Design
Considering the significant distinctions among different attack models, we leave considerable freedom for the skeleton design of attack models, and focus more on streamlining the general processing of adversarial attacking and the common components used in attack models.
OpenAttack has 7 main modules:
<img src="./docs/source/images/toolkit_framework.png" alt="toolkit_framework" style="zoom:40%;" />
* **TextProcessor**: processing the original text sequence to assist attack models in generating adversarial examples;
* **Victim**: wrapping victim models;
* **Attacker**: comprising various attack models;
* **AttackAssist**: packing different word/character substitution methods that are used in word-/character-level attack models and some other components used in sentence-level attack models like the paraphrasing model;
* **Metric**: providing several adversarial example quality metrics that can serve as either the constraints on the adversarial examples during attacking or evaluation metrics for evaluating adversarial attacks;
* **AttackEval**: evaluating textual adversarial attacks from attack effectiveness, adversarial example quality and attack efficiency;
* **DataManager**: managing all data and saved models that are used in other modules.
## Citation
Please cite our [paper](https://aclanthology.org/2021.acl-demo.43.pdf) if you use this toolkit:
```
@inproceedings{zeng2020openattack,
title={{Openattack: An open-source textual adversarial attack toolkit}},
author={Zeng, Guoyang and Qi, Fanchao and Zhou, Qianrui and Zhang, Tingji and Hou, Bairu and Zang, Yuan and Liu, Zhiyuan and Sun, Maosong},
booktitle={Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations},
pages={363--371},
year={2021},
url={https://aclanthology.org/2021.acl-demo.43},
doi={10.18653/v1/2021.acl-demo.43}
}
```
## Contributors
We thank all the contributors to this project. And more contributions are very welcome.
<a href="https://github.com/thunlp/OpenAttack/graphs/contributors">
<img src="https://contrib.rocks/image?repo=thunlp/OpenAttack"/></a>
%package help
Summary: Development documents and examples for OpenAttack
Provides: python3-OpenAttack-doc
%description help
<p align="center">
<img src="docs/source/images/logo.svg" width = "400" alt="OpenAttack Logo" align=center />
</p>
<p align="center">
<a target="_blank">
<img src="https://github.com/thunlp/OpenAttack/workflows/Test/badge.svg?branch=master" alt="Github Runner Covergae Status">
</a>
<a href="https://openattack.readthedocs.io/" target="_blank">
<img src="https://readthedocs.org/projects/openattack/badge/?version=latest" alt="ReadTheDoc Status">
</a>
<a href="https://pypi.org/project/OpenAttack/" target="_blank">
<img src="https://img.shields.io/pypi/v/OpenAttack?label=pypi" alt="PyPI version">
</a>
<a href="https://github.com/thunlp/OpenAttack/releases" target="_blank">
<img src="https://img.shields.io/github/v/release/thunlp/OpenAttack" alt="GitHub release (latest by date)">
</a>
<a target="_blank">
<img alt="GitHub" src="https://img.shields.io/github/license/thunlp/OpenAttack">
</a>
<a target="_blank">
<img src="https://img.shields.io/badge/PRs-Welcome-red" alt="PRs are Welcome">
</a>
<br><br>
<a href="https://openattack.readthedocs.io/" target="_blank">Documentation</a> • <a href="#features--uses">Features & Uses</a> • <a href="#usage-examples">Usage Examples</a> • <a href="#attack-models">Attack Models</a> • <a href="#toolkit-design">Toolkit Design</a>
<br>
</p>
OpenAttack is an open-source Python-based textual adversarial attack toolkit, which handles the whole process of textual adversarial attacking, including preprocessing text, accessing the victim model, generating adversarial examples and evaluation.
## Features & Uses
#### OpenAttack has the following features:
⭐️ **Support for all attack types**. OpenAttack supports all types of attacks including sentence-/word-/character-level perturbations and gradient-/score-/decision-based/blind attack models;
⭐️ **Multilinguality**. OpenAttack supports English and Chinese now. Its extensible design enables quick support for more languages;
⭐️ **Parallel processing**. OpenAttack provides support for multi-process running of attack models to improve attack efficiency;
⭐️ **Compatibility with 🤗 Hugging Face**. OpenAttack is fully integrated with 🤗 [Transformers](https://github.com/huggingface/transformers) and [Datasets](https://github.com/huggingface/datasets) libraries;
⭐️ **Great extensibility**. You can easily attack a customized <u>victim model</u> on any customized <u>dataset</u> or develop and evaluate a customized <u>attack model</u>.
#### OpenAttack has a wide range of uses, including:
✅ Providing various handy **baselines** for attack models;
✅ Comprehensively **evaluating** attack models using its thorough evaluation metrics;
✅ Assisting in quick development of **new attack models** with the help of its common attack components;
✅ Evaluating the **robustness** of a machine learning model against various adversarial attacks;
✅ Conducting **adversarial training** to improve robustness of a machine learning model by enriching the training data with generated adversarial examples.
## Installation
#### 1. Using `pip` (recommended)
```bash
pip install OpenAttack
```
#### 2. Cloning this repo
```bash
git clone https://github.com/thunlp/OpenAttack.git
cd OpenAttack
python setup.py install
```
After installation, you can try running `demo.py` to check if OpenAttack works well:
```
python demo.py
```

## Usage Examples
#### Attack Built-in Victim Models
OpenAttack builds in some commonly used NLP models like BERT ([Devlin et al. 2018](https://arxiv.org/abs/1810.04805)) and RoBERTa ([Liu et al. 2019](https://arxiv.org/abs/1907.11692)) that have been fine-tuned on some commonly used datasets (such as [SST-2](https://nlp.stanford.edu/sentiment/treebank.html)). You can effortlessly conduct adversarial attacks against these built-in victim models.
The following code snippet shows how to use PWWS, a greedy algorithm-based attack model ([Ren et al., 2019](https://www.aclweb.org/anthology/P19-1103.pdf)), to attack BERT on the SST-2 dataset (the complete executable code is [here](./examples/workflow.py)).
```python
import OpenAttack as oa
import datasets # use the Hugging Face's datasets library
# change the SST dataset into 2-class
def dataset_mapping(x):
return {
"x": x["sentence"],
"y": 1 if x["label"] > 0.5 else 0,
}
# choose a trained victim classification model
victim = oa.DataManager.loadVictim("BERT.SST")
# choose 20 examples from SST-2 as the evaluation data
dataset = datasets.load_dataset("sst", split="train[:20]").map(function=dataset_mapping)
# choose PWWS as the attacker and initialize it with default parameters
attacker = oa.attackers.PWWSAttacker()
# prepare for attacking
attack_eval = OpenAttack.AttackEval(attacker, victim)
# launch attacks and print attack results
attack_eval.eval(dataset, visualize=True)
```
<details>
<summary><strong>Customized Victim Model</strong></summary>
The following code snippet shows how to use PWWS to attack a **customized sentiment analysis model** (a statistical model built in NLTK) on SST-2 (the complete executable code is [here](./examples/custom_victim.py)).
```python
import OpenAttack as oa
import numpy as np
import datasets
import nltk
from nltk.sentiment.vader import SentimentIntensityAnalyzer
# configure access interface of the customized victim model by extending OpenAttack.Classifier.
class MyClassifier(oa.Classifier):
def __init__(self):
# nltk.sentiment.vader.SentimentIntensityAnalyzer is a traditional sentiment classification model.
nltk.download('vader_lexicon')
self.model = SentimentIntensityAnalyzer()
def get_pred(self, input_):
return self.get_prob(input_).argmax(axis=1)
# access to the classification probability scores with respect input sentences
def get_prob(self, input_):
ret = []
for sent in input_:
# SentimentIntensityAnalyzer calculates scores of “neg” and “pos” for each instance
res = self.model.polarity_scores(sent)
# we use 𝑠𝑜𝑐𝑟𝑒_𝑝𝑜𝑠 / (𝑠𝑐𝑜𝑟𝑒_𝑛𝑒𝑔 + 𝑠𝑐𝑜𝑟𝑒_𝑝𝑜𝑠) to represent the probability of positive sentiment
# Adding 10^−6 is a trick to avoid dividing by zero.
prob = (res["pos"] + 1e-6) / (res["neg"] + res["pos"] + 2e-6)
ret.append(np.array([1 - prob, prob]))
# The get_prob method finally returns a np.ndarray of shape (len(input_), 2). See Classifier for detail.
return np.array(ret)
def dataset_mapping(x):
return {
"x": x["sentence"],
"y": 1 if x["label"] > 0.5 else 0,
}
# load some examples of SST-2 for evaluation
dataset = datasets.load_dataset("sst", split="train[:20]").map(function=dataset_mapping)
# choose the costomized classifier as the victim model
victim = MyClassifier()
# choose PWWS as the attacker and initialize it with default parameters
attacker = oa.attackers.PWWSAttacker()
# prepare for attacking
attack_eval = oa.AttackEval(attacker, victim)
# launch attacks and print attack results
attack_eval.eval(dataset, visualize=True)
```
</details>
<details>
<summary><strong>Customized Dataset</strong></summary>
The following code snippet shows how to use PWWS to attack an existing fine-tuned sentiment analysis model on a **customized** dataset (the complete executable code is [here](./examples/custom_dataset.py)).
```python
import OpenAttack as oa
import transformers
import datasets
# load a fine-tuned sentiment analysis model from Transformers (you can also use our fine-tuned Victim.BERT.SST)
tokenizer = transformers.AutoTokenizer.from_pretrained("echarlaix/bert-base-uncased-sst2-acc91.1-d37-hybrid")
model = transformers.AutoModelForSequenceClassification.from_pretrained("echarlaix/bert-base-uncased-sst2-acc91.1-d37-hybrid", num_labels=2, output_hidden_states=False)
victim = oa.classifiers.TransformersClassifier(model, tokenizer, model.bert.embeddings.word_embeddings)
# choose PWWS as the attacker and initialize it with default parameters
attacker = oa.attackers.PWWSAttacker()
# create your customized dataset
dataset = datasets.Dataset.from_dict({
"x": [
"I hate this movie.",
"I like this apple."
],
"y": [
0, # 0 for negative
1, # 1 for positive
]
})
# prepare for attacking
attack_eval = oa.AttackEval(attacker, victim, metrics = [oa.metric.EditDistance(), oa.metric.ModificationRate()])
# launch attacks and print attack results
attack_eval.eval(dataset, visualize=True)
```
</details>
<details>
<summary><strong>Multiprocessing</strong></summary>
OpenAttack supports convenient multiprocessing to accelerate the process of adversarial attacks. The following code snippet shows how to use multiprocessing in adversarial attacks with Genetic ([Alzantot et al. 2018](https://www.aclweb.org/anthology/D18-1316)), a genetic algorithm-based attack model (the complete executable code is [here](./examples/multiprocess_eval.py)).
```python
import OpenAttack as oa
import datasets
def dataset_mapping(x):
return {
"x": x["sentence"],
"y": 1 if x["label"] > 0.5 else 0,
}
victim = oa.loadVictim("BERT.SST")
dataset = datasets.load_dataset("sst", split="train[:20]").map(function=dataset_mapping)
attacker = oa.attackers.GeneticAttacker()
attack_eval = oa.AttackEval(attacker, victim)
# Using multiprocessing simply by specify num_workers
attack_eval.eval(dataset, visualize=True, num_workers=4)
```
</details>
<details>
<summary><strong>Chinese Attack</strong></summary>
OpenAttack now supports adversarial attacks against English and Chinese victim models. [Here](./examples/chinese.py) is an example code of conducting adversarial attacks against a Chinese review classification model using PWWS.
</details>
<details>
<summary><strong>Customized Attack Model</strong></summary>
OpenAttack incorporates many handy components that can be easily assembled into new attack models. [Here](./examples/custom_attacker.py) gives an example of how to design a simple attack model that shuffles the tokens in the original sentence.
</details>
<details>
<summary><strong>Adversarial Training</strong></summary>
OpenAttack can easily generate adversarial examples by attacking instances in the training set, which can be added to original training data set to retrain a more robust victim model, i.e., adversarial training. [Here](./examples/adversarial_training.py) gives an example of how to conduct adversarial training with OpenAttack.
</details>
<details>
<summary><strong>More Examples</strong></summary>
- Attack Sentence Pair Classification Models. In addition to single sentence classification models, OpenAttack support attacks against sentence pair classification models. [Here](./examples/nli_attack.py) is an example code of conducting adversarial attacks against an NLI model with OpenAttack.
- Customized Evaluation Metric. OpenAttack supports designing a customized adversarial attack evaluation metric. [Here](./examples/custom_eval.py) gives an example of how to add a customized evaluation metric and use it to evaluate adversarial attacks.
</details>
## Attack Models
According to the level of perturbations imposed on original input, textual adversarial attack models can be categorized into sentence-level, word-level, character-level attack models.
According to the accessibility to the victim model, textual adversarial attack models can be categorized into `gradient`-based, `score`-based, `decision`-based and `blind` attack models.
> [TAADPapers](https://github.com/thunlp/TAADpapers) is a paper list which summarizes almost all the papers concerning textual adversarial attack and defense. You can have a look at this list to find more attack models.
Currently OpenAttack includes 15 typical attack models against text classification models that cover **all** attack types.
Here is the list of currently involved attack models.
- Sentence-level
- (SEA) **Semantically Equivalent Adversarial Rules for Debugging NLP Models**. *Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin*. ACL 2018. `decision` [[pdf](https://aclweb.org/anthology/P18-1079)] [[code](https://github.com/marcotcr/sears)]
- (SCPN) **Adversarial Example Generation with Syntactically Controlled Paraphrase Networks**. *Mohit Iyyer, John Wieting, Kevin Gimpel, Luke Zettlemoyer*. NAACL-HLT 2018. `blind` [[pdf](https://www.aclweb.org/anthology/N18-1170)] [[code&data](https://github.com/miyyer/scpn)]
- (GAN) **Generating Natural Adversarial Examples**. *Zhengli Zhao, Dheeru Dua, Sameer Singh*. ICLR 2018. `decision` [[pdf](https://arxiv.org/pdf/1710.11342.pdf)] [[code](https://github.com/zhengliz/natural-adversary)]
- Word-level
- (TextFooler) **Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment**. *Di Jin, Zhijing Jin, Joey Tianyi Zhou, Peter Szolovits*. AAAI-20. `score` [[pdf](https://arxiv.org/pdf/1907.11932v4)] [[code](https://github.com/wqj111186/TextFooler)]
- (PWWS) **Generating Natural Language Adversarial Examples through Probability Weighted Word Saliency**. *Shuhuai Ren, Yihe Deng, Kun He, Wanxiang Che*. ACL 2019. `score` [[pdf](https://www.aclweb.org/anthology/P19-1103.pdf)] [[code](https://github.com/JHL-HUST/PWWS/)]
- (Genetic) **Generating Natural Language Adversarial Examples**. *Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava, Kai-Wei Chang*. EMNLP 2018. `score` [[pdf](https://www.aclweb.org/anthology/D18-1316)] [[code](https://github.com/nesl/nlp_adversarial_examples)]
- (SememePSO) **Word-level Textual Adversarial Attacking as Combinatorial Optimization**. *Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qun Liu and Maosong Sun*. ACL 2020. `score` [[pdf](https://www.aclweb.org/anthology/2020.acl-main.540.pdf)] [[code](https://github.com/thunlp/SememePSO-Attack)]
- (BERT-ATTACK) **BERT-ATTACK: Adversarial Attack Against BERT Using BERT**. *Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, Xipeng Qiu*. EMNLP 2020. `score` [[pdf](https://www.aclweb.org/anthology/2020.emnlp-main.500.pdf)] [[code](https://github.com/LinyangLee/BERT-Attack)]
- (BAE) **BAE: BERT-based Adversarial Examples for Text Classification**. *Siddhant Garg, Goutham Ramakrishnan. EMNLP 2020*. `score` [[pdf](https://www.aclweb.org/anthology/2020.emnlp-main.498.pdf)] [[code](https://github.com/QData/TextAttack/blob/master/textattack/attack_recipes/bae_garg_2019.py)]
- (FD) **Crafting Adversarial Input Sequences For Recurrent Neural Networks**. *Nicolas Papernot, Patrick McDaniel, Ananthram Swami, Richard Harang*. MILCOM 2016. `gradient` [[pdf](https://arxiv.org/pdf/1604.08275.pdf)]
- Word/Char-level
- (TextBugger) **TEXTBUGGER: Generating Adversarial Text Against Real-world Applications**. *Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, Ting Wang*. NDSS 2019. `gradient` `score` [[pdf](https://arxiv.org/pdf/1812.05271.pdf)]
- (UAT) **Universal Adversarial Triggers for Attacking and Analyzing NLP.** *Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, Sameer Singh*. EMNLP-IJCNLP 2019. `gradient` [[pdf](https://arxiv.org/pdf/1908.07125.pdf)] [[code](https://github.com/Eric-Wallace/universal-triggers)] [[website](http://www.ericswallace.com/triggers)]
- (HotFlip) **HotFlip: White-Box Adversarial Examples for Text Classification**. *Javid Ebrahimi, Anyi Rao, Daniel Lowd, Dejing Dou*. ACL 2018. `gradient` [[pdf](https://www.aclweb.org/anthology/P18-2006)] [[code](https://github.com/AnyiRao/WordAdver)]
- Char-level
- (VIPER) **Text Processing Like Humans Do: Visually Attacking and Shielding NLP Systems**. *Steffen Eger, Gözde Gül ¸Sahin, Andreas Rücklé, Ji-Ung Lee, Claudia Schulz, Mohsen Mesgar, Krishnkant Swarnkar, Edwin Simpson, Iryna Gurevych*. NAACL-HLT 2019. `score` [[pdf](https://www.aclweb.org/anthology/N19-1165)] [[code&data](https://github.com/UKPLab/naacl2019-like-humans-visual-attacks)]
- (DeepWordBug) **Black-box Generation of Adversarial Text Sequences to Evade Deep Learning Classifiers**. *Ji Gao, Jack Lanchantin, Mary Lou Soffa, Yanjun Qi*. IEEE SPW 2018. `score` [[pdf](https://ieeexplore.ieee.org/document/8424632)] [[code](https://github.com/QData/deepWordBug)]
The following table illustrates the comparison of the attack models.
| Model | Accessibility | Perturbation | Main Idea |
| :---------: | :-------------: | :----------: | :-------------------------------------------------- |
| SEA | Decision | Sentence | Rule-based paraphrasing |
| SCPN | Blind | Sentence | Paraphrasing |
| GAN | Decision | Sentence | Text generation by encoder-decoder |
| TextFooler | Score | Word | Greedy word substitution |
| PWWS | Score | Word | Greedy word substitution |
| Genetic | Score | Word | Genetic algorithm-based word substitution |
| SememePSO | Score | Word | Particle Swarm Optimization-based word substitution |
| BERT-ATTACK | Score | Word | Greedy contextualized word substitution |
| BAE | Score | Word | Greedy contextualized word substitution and insertion |
| FD | Gradient | Word | Gradient-based word substitution |
| TextBugger | Gradient, Score | Word+Char | Greedy word substitution and character manipulation |
| UAT | Gradient | Word, Char | Gradient-based word or character manipulation |
| HotFlip | Gradient | Word, Char | Gradient-based word or character substitution |
| VIPER | Blind | Char | Visually similar character substitution |
| DeepWordBug | Score | Char | Greedy character manipulation |
## Toolkit Design
Considering the significant distinctions among different attack models, we leave considerable freedom for the skeleton design of attack models, and focus more on streamlining the general processing of adversarial attacking and the common components used in attack models.
OpenAttack has 7 main modules:
<img src="./docs/source/images/toolkit_framework.png" alt="toolkit_framework" style="zoom:40%;" />
* **TextProcessor**: processing the original text sequence to assist attack models in generating adversarial examples;
* **Victim**: wrapping victim models;
* **Attacker**: comprising various attack models;
* **AttackAssist**: packing different word/character substitution methods that are used in word-/character-level attack models and some other components used in sentence-level attack models like the paraphrasing model;
* **Metric**: providing several adversarial example quality metrics that can serve as either the constraints on the adversarial examples during attacking or evaluation metrics for evaluating adversarial attacks;
* **AttackEval**: evaluating textual adversarial attacks from attack effectiveness, adversarial example quality and attack efficiency;
* **DataManager**: managing all data and saved models that are used in other modules.
## Citation
Please cite our [paper](https://aclanthology.org/2021.acl-demo.43.pdf) if you use this toolkit:
```
@inproceedings{zeng2020openattack,
title={{Openattack: An open-source textual adversarial attack toolkit}},
author={Zeng, Guoyang and Qi, Fanchao and Zhou, Qianrui and Zhang, Tingji and Hou, Bairu and Zang, Yuan and Liu, Zhiyuan and Sun, Maosong},
booktitle={Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations},
pages={363--371},
year={2021},
url={https://aclanthology.org/2021.acl-demo.43},
doi={10.18653/v1/2021.acl-demo.43}
}
```
## Contributors
We thank all the contributors to this project. And more contributions are very welcome.
<a href="https://github.com/thunlp/OpenAttack/graphs/contributors">
<img src="https://contrib.rocks/image?repo=thunlp/OpenAttack"/></a>
%prep
%autosetup -n OpenAttack-2.1.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-OpenAttack -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 2.1.1-1
- Package Spec generated
|