summaryrefslogtreecommitdiff
path: root/python-pyrkhsstats.spec
blob: 90897ee4c1145ab68054e33bf6980fc0fd686a05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
%global _empty_manifest_terminate_build 0
Name:		python-PyRKHSstats
Version:	2.1.0
Release:	1
Summary:	A Python package for kernel methods in Statistics/ML.
License:	GNU General Public License v3.0
URL:		https://github.com/Black-Swan-ICL/PyRKHSstats
Source0:	https://mirrors.aliyun.com/pypi/web/packages/68/7f/01cf21d15ef653abdd9c7bb00fb772467c8618cf19ba38944f833c4f224b/PyRKHSstats-2.1.0.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-scipy
Requires:	python3-pandas
Requires:	python3-scikit-learn
Requires:	python3-GPy
Requires:	python3-pyyaml

%description
# PyRKHSstats
A Python package implementing a variety of statistical/machine learning methods 
that rely on kernels (e.g. HSIC for independence testing).

## Overview
- Independence testing with HSIC (Hilbert-Schmidt Independence Criterion), as 
  introduced in
  [A Kernel Statistical Test of Independence](https://papers.nips.cc/paper/2007/hash/d5cfead94f5350c12c322b5b664544c1-Abstract.html), 
  A. Gretton, K. Fukumizu, C. Hui Teo, L. Song, B. Schölkopf, and A. 
  Smola (NIPS 2007).
- Measurement of conditional independence with HSCIC (Hilbert-Schmidt 
  Conditional Independence Criterion), as introduced in 
  [A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings](https://papers.nips.cc/paper/2020/hash/f340f1b1f65b6df5b5e3f94d95b11daf-Abstract.html),
  J. Park and K. Muandet (NeurIPS 2020).
- The Kernel-based Conditional Independence Test (KCIT), as introduced in 
  [Kernel-based Conditional Independence Test and Application in Causal 
  Discovery](https://arxiv.org/abs/1202.3775), K. Zhang, J. Peters, D. Janzing,
  B. Schölkopf (UAI 2011).
- Two-sample testing (also known as homogeneity testing) with the MMD 
  (Maximum Mean Discrepancy), as presented in [A Fast, Consistent Kernel 
  Two-Sample Test](https://papers.nips.cc/paper/2009/hash/9246444d94f081e3549803b928260f56-Abstract.html),
  A. Gretton, K. Fukumizu, Z. Harchaoui, and B. K. Sriperumbudur (NIPS 2009) 
  and in [A Kernel Two-Sample Test](https://jmlr.org/papers/v13/gretton12a.html), 
  A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola 
  (JMLR, volume 13, 2012).

<br>

| Resource | Description | 
| :---  | :--- | 
| HSIC | For independence testing | 
| HSCIC | For the measurement of conditional independence | 
| KCIT | For conditional independence testing | 
| MMD | For two-sample testing |


## Implementations available

The following table details the implementation schemes for the different 
resources available in the package.

| Resource | Implementation Scheme | Numpy based available | PyTorch based available |
| :---  | :--- | :----: |:----: |
| HSIC | Resampling (permuting the x<sub>i</sub>'s but leaving the y<sub>i</sub>'s unchanged) | Yes | No |
| HSIC | Gamma approximation | Yes | No |
| HSCIC | N/A | Yes | Yes |
| KCIT | Gamma approximation | Yes | No |
| KCIT | Monte Carlo simulation (weighted sum of &chi;<sup>2</sup> random variables)| Yes | No |
| MMD | Gram matrix spectrum | Yes | No |

[comment]: <> (| MMD | Permutation | Yes | No |)

<br>

## In development
- Joint independence testing with dHSIC.
- Goodness-of-fit testing.
- Methods for time series models.
- Bayesian statistical kernel methods.
- Regression by independence maximisation.



%package -n python3-PyRKHSstats
Summary:	A Python package for kernel methods in Statistics/ML.
Provides:	python-PyRKHSstats
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-PyRKHSstats
# PyRKHSstats
A Python package implementing a variety of statistical/machine learning methods 
that rely on kernels (e.g. HSIC for independence testing).

## Overview
- Independence testing with HSIC (Hilbert-Schmidt Independence Criterion), as 
  introduced in
  [A Kernel Statistical Test of Independence](https://papers.nips.cc/paper/2007/hash/d5cfead94f5350c12c322b5b664544c1-Abstract.html), 
  A. Gretton, K. Fukumizu, C. Hui Teo, L. Song, B. Sch&#246;lkopf, and A. 
  Smola (NIPS 2007).
- Measurement of conditional independence with HSCIC (Hilbert-Schmidt 
  Conditional Independence Criterion), as introduced in 
  [A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings](https://papers.nips.cc/paper/2020/hash/f340f1b1f65b6df5b5e3f94d95b11daf-Abstract.html),
  J. Park and K. Muandet (NeurIPS 2020).
- The Kernel-based Conditional Independence Test (KCIT), as introduced in 
  [Kernel-based Conditional Independence Test and Application in Causal 
  Discovery](https://arxiv.org/abs/1202.3775), K. Zhang, J. Peters, D. Janzing,
  B. Sch&#246;lkopf (UAI 2011).
- Two-sample testing (also known as homogeneity testing) with the MMD 
  (Maximum Mean Discrepancy), as presented in [A Fast, Consistent Kernel 
  Two-Sample Test](https://papers.nips.cc/paper/2009/hash/9246444d94f081e3549803b928260f56-Abstract.html),
  A. Gretton, K. Fukumizu, Z. Harchaoui, and B. K. Sriperumbudur (NIPS 2009) 
  and in [A Kernel Two-Sample Test](https://jmlr.org/papers/v13/gretton12a.html), 
  A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Sch&#246;lkopf, and A. Smola 
  (JMLR, volume 13, 2012).

<br>

| Resource | Description | 
| :---  | :--- | 
| HSIC | For independence testing | 
| HSCIC | For the measurement of conditional independence | 
| KCIT | For conditional independence testing | 
| MMD | For two-sample testing |


## Implementations available

The following table details the implementation schemes for the different 
resources available in the package.

| Resource | Implementation Scheme | Numpy based available | PyTorch based available |
| :---  | :--- | :----: |:----: |
| HSIC | Resampling (permuting the x<sub>i</sub>'s but leaving the y<sub>i</sub>'s unchanged) | Yes | No |
| HSIC | Gamma approximation | Yes | No |
| HSCIC | N/A | Yes | Yes |
| KCIT | Gamma approximation | Yes | No |
| KCIT | Monte Carlo simulation (weighted sum of &chi;<sup>2</sup> random variables)| Yes | No |
| MMD | Gram matrix spectrum | Yes | No |

[comment]: <> (| MMD | Permutation | Yes | No |)

<br>

## In development
- Joint independence testing with dHSIC.
- Goodness-of-fit testing.
- Methods for time series models.
- Bayesian statistical kernel methods.
- Regression by independence maximisation.



%package help
Summary:	Development documents and examples for PyRKHSstats
Provides:	python3-PyRKHSstats-doc
%description help
# PyRKHSstats
A Python package implementing a variety of statistical/machine learning methods 
that rely on kernels (e.g. HSIC for independence testing).

## Overview
- Independence testing with HSIC (Hilbert-Schmidt Independence Criterion), as 
  introduced in
  [A Kernel Statistical Test of Independence](https://papers.nips.cc/paper/2007/hash/d5cfead94f5350c12c322b5b664544c1-Abstract.html), 
  A. Gretton, K. Fukumizu, C. Hui Teo, L. Song, B. Sch&#246;lkopf, and A. 
  Smola (NIPS 2007).
- Measurement of conditional independence with HSCIC (Hilbert-Schmidt 
  Conditional Independence Criterion), as introduced in 
  [A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings](https://papers.nips.cc/paper/2020/hash/f340f1b1f65b6df5b5e3f94d95b11daf-Abstract.html),
  J. Park and K. Muandet (NeurIPS 2020).
- The Kernel-based Conditional Independence Test (KCIT), as introduced in 
  [Kernel-based Conditional Independence Test and Application in Causal 
  Discovery](https://arxiv.org/abs/1202.3775), K. Zhang, J. Peters, D. Janzing,
  B. Sch&#246;lkopf (UAI 2011).
- Two-sample testing (also known as homogeneity testing) with the MMD 
  (Maximum Mean Discrepancy), as presented in [A Fast, Consistent Kernel 
  Two-Sample Test](https://papers.nips.cc/paper/2009/hash/9246444d94f081e3549803b928260f56-Abstract.html),
  A. Gretton, K. Fukumizu, Z. Harchaoui, and B. K. Sriperumbudur (NIPS 2009) 
  and in [A Kernel Two-Sample Test](https://jmlr.org/papers/v13/gretton12a.html), 
  A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Sch&#246;lkopf, and A. Smola 
  (JMLR, volume 13, 2012).

<br>

| Resource | Description | 
| :---  | :--- | 
| HSIC | For independence testing | 
| HSCIC | For the measurement of conditional independence | 
| KCIT | For conditional independence testing | 
| MMD | For two-sample testing |


## Implementations available

The following table details the implementation schemes for the different 
resources available in the package.

| Resource | Implementation Scheme | Numpy based available | PyTorch based available |
| :---  | :--- | :----: |:----: |
| HSIC | Resampling (permuting the x<sub>i</sub>'s but leaving the y<sub>i</sub>'s unchanged) | Yes | No |
| HSIC | Gamma approximation | Yes | No |
| HSCIC | N/A | Yes | Yes |
| KCIT | Gamma approximation | Yes | No |
| KCIT | Monte Carlo simulation (weighted sum of &chi;<sup>2</sup> random variables)| Yes | No |
| MMD | Gram matrix spectrum | Yes | No |

[comment]: <> (| MMD | Permutation | Yes | No |)

<br>

## In development
- Joint independence testing with dHSIC.
- Goodness-of-fit testing.
- Methods for time series models.
- Bayesian statistical kernel methods.
- Regression by independence maximisation.



%prep
%autosetup -n PyRKHSstats-2.1.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-PyRKHSstats -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 2.1.0-1
- Package Spec generated