1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
%global _empty_manifest_terminate_build 0
Name: python-Pytrad
Version: 0.1.1.5
Release: 1
Summary: Pytrad Python Package
License: MIT License
URL: https://github.com/cmu-phil/pytrad
Source0: https://mirrors.aliyun.com/pypi/web/packages/6e/dd/924f75bed29d14de5368343e3448aa65bfe879f4f0fd46de772a1d002a8a/Pytrad-0.1.1.5.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-scikit-learn
Requires: python3-graphviz
Requires: python3-statsmodels
Requires: python3-pandas
Requires: python3-matplotlib
Requires: python3-networkx
Requires: python3-pydot
%description
# Pytrad: Causal Discovery for Python
Pytrad is an open-source causal discovery library for Python, which is a Python translation and extension of [Tetrad](https://github.com/cmu-phil/tetrad).
The package is on its very first version and we are actively developing it. Please, as a beta user, if you are willing, would you please kindly share any feedbacks (issues, suggestions, etc.) about it with us?
# Package Overview
Our Pytrad implements methods for causal discovery:
* Constrained-based causal discovery methods.
* Score-based causal discovery methods.
* Causal discovery methods based on constrained functional causal models.
* Hidden causal representation learning.
* Granger causality.
* Multiple utilities for building your own method, such as independence tests, score functions, graph operations, and evaluations.
# Install
Pytrad needs the following packages to be installed beforehand:
* python 3
* numpy
* networkx
* pandas
* scipy
* scikit-learn
* statsmodels
* pydot
(For visualization)
* matplotlib
* graphviz
To use Pytrad, we could install it using [pip](https://pypi.org/project/sqlparse/):
```
pip install pytrad
```
# Documentation
Please kindly refer to [Pytrad Doc](https://pytrad-docs.readthedocs.io/en/latest/) for detailed tutorials and usages.
%package -n python3-Pytrad
Summary: Pytrad Python Package
Provides: python-Pytrad
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-Pytrad
# Pytrad: Causal Discovery for Python
Pytrad is an open-source causal discovery library for Python, which is a Python translation and extension of [Tetrad](https://github.com/cmu-phil/tetrad).
The package is on its very first version and we are actively developing it. Please, as a beta user, if you are willing, would you please kindly share any feedbacks (issues, suggestions, etc.) about it with us?
# Package Overview
Our Pytrad implements methods for causal discovery:
* Constrained-based causal discovery methods.
* Score-based causal discovery methods.
* Causal discovery methods based on constrained functional causal models.
* Hidden causal representation learning.
* Granger causality.
* Multiple utilities for building your own method, such as independence tests, score functions, graph operations, and evaluations.
# Install
Pytrad needs the following packages to be installed beforehand:
* python 3
* numpy
* networkx
* pandas
* scipy
* scikit-learn
* statsmodels
* pydot
(For visualization)
* matplotlib
* graphviz
To use Pytrad, we could install it using [pip](https://pypi.org/project/sqlparse/):
```
pip install pytrad
```
# Documentation
Please kindly refer to [Pytrad Doc](https://pytrad-docs.readthedocs.io/en/latest/) for detailed tutorials and usages.
%package help
Summary: Development documents and examples for Pytrad
Provides: python3-Pytrad-doc
%description help
# Pytrad: Causal Discovery for Python
Pytrad is an open-source causal discovery library for Python, which is a Python translation and extension of [Tetrad](https://github.com/cmu-phil/tetrad).
The package is on its very first version and we are actively developing it. Please, as a beta user, if you are willing, would you please kindly share any feedbacks (issues, suggestions, etc.) about it with us?
# Package Overview
Our Pytrad implements methods for causal discovery:
* Constrained-based causal discovery methods.
* Score-based causal discovery methods.
* Causal discovery methods based on constrained functional causal models.
* Hidden causal representation learning.
* Granger causality.
* Multiple utilities for building your own method, such as independence tests, score functions, graph operations, and evaluations.
# Install
Pytrad needs the following packages to be installed beforehand:
* python 3
* numpy
* networkx
* pandas
* scipy
* scikit-learn
* statsmodels
* pydot
(For visualization)
* matplotlib
* graphviz
To use Pytrad, we could install it using [pip](https://pypi.org/project/sqlparse/):
```
pip install pytrad
```
# Documentation
Please kindly refer to [Pytrad Doc](https://pytrad-docs.readthedocs.io/en/latest/) for detailed tutorials and usages.
%prep
%autosetup -n Pytrad-0.1.1.5
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-Pytrad -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.1.5-1
- Package Spec generated
|