summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-spadecon.spec251
-rw-r--r--sources1
3 files changed, 253 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..9453fcb 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/SpaDecon-1.1.2.tar.gz
diff --git a/python-spadecon.spec b/python-spadecon.spec
new file mode 100644
index 0000000..1c97858
--- /dev/null
+++ b/python-spadecon.spec
@@ -0,0 +1,251 @@
+%global _empty_manifest_terminate_build 0
+Name: python-SpaDecon
+Version: 1.1.2
+Release: 1
+Summary: SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning
+License: MIT License
+URL: https://github.com/kylepcoleman87/SpaDecon
+Source0: https://mirrors.aliyun.com/pypi/web/packages/fa/a0/96e2f8fba0e577948f7e7e948f31aa619968bd1ce0861f94ff392c341826/SpaDecon-1.1.2.tar.gz
+BuildArch: noarch
+
+Requires: python3-keras
+Requires: python3-pandas
+Requires: python3-numpy
+Requires: python3-scipy
+Requires: python3-scanpy
+Requires: python3-anndata
+Requires: python3-sklearn
+Requires: python3-tensorflow
+
+%description
+# SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning
+
+### Kyle Coleman, Jian Hu, Amelia Schroeder, Edward B. Lee, Mingyao Li*
+
+SpaDecon is a semi-supervised learning-based method developed to perform cell-type deconvolution on spatially resolved transcriptomics (SRT) datasets. SpaDecon has been shown to provide accurate cell-type deconvolution results for both Spatial Transcriptomics (ST) and 10X Visium SRT datasets. Annotated scRNA-seq gene expression data from the same type of tissue as the SRT data are required for deconvolution.
+
+![png](images/spadecon_workflow.png)
+
+## SpaDecon Installation
+- SpaDecon installation requires a python version of at least 3.6. The version of python can be checked by:
+```python
+import platform
+platform.python_version()
+```
+
+ '3.7.11'
+
+We recommend creating and activating a new conda environment when installing the SpaDecon package. For instance,
+```bash
+conda create -n SpaDecon python=3.7
+conda activate SpaDecon
+```
+
+There are mulitple ways to install SpaDecon:
+
+- Install SpaDecon using PyPI:
+
+```bash
+pip3 install SpaDecon
+```
+
+- Download and install SpaDecon package from GitHub:
+
+```bash
+git clone https://github.com/kpcoleman/SpaDecon
+cd SpaDecon/
+python3 setup.py install --user
+```
+
+## Tutorial
+A markdown tutorial file can be found here: https://github.com/kpcoleman/SpaDecon/blob/main/tutorial/Tutorial.md
+
+A tutorial in the form of a jupyter notebook can be found here: https://github.com/kpcoleman/SpaDecon/blob/main/tutorial/tutorial.ipynb
+
+
+
+## Software Requirements
+python >= 3.6
+keras==2.2.4
+pandas==1.2.4
+numpy==1.20.1
+scipy==1.6.2
+scanpy==1.7.0
+anndata==0.7.6
+sklearn
+tensorflow==1.14.0
+
+
+
+%package -n python3-SpaDecon
+Summary: SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning
+Provides: python-SpaDecon
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-SpaDecon
+# SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning
+
+### Kyle Coleman, Jian Hu, Amelia Schroeder, Edward B. Lee, Mingyao Li*
+
+SpaDecon is a semi-supervised learning-based method developed to perform cell-type deconvolution on spatially resolved transcriptomics (SRT) datasets. SpaDecon has been shown to provide accurate cell-type deconvolution results for both Spatial Transcriptomics (ST) and 10X Visium SRT datasets. Annotated scRNA-seq gene expression data from the same type of tissue as the SRT data are required for deconvolution.
+
+![png](images/spadecon_workflow.png)
+
+## SpaDecon Installation
+- SpaDecon installation requires a python version of at least 3.6. The version of python can be checked by:
+```python
+import platform
+platform.python_version()
+```
+
+ '3.7.11'
+
+We recommend creating and activating a new conda environment when installing the SpaDecon package. For instance,
+```bash
+conda create -n SpaDecon python=3.7
+conda activate SpaDecon
+```
+
+There are mulitple ways to install SpaDecon:
+
+- Install SpaDecon using PyPI:
+
+```bash
+pip3 install SpaDecon
+```
+
+- Download and install SpaDecon package from GitHub:
+
+```bash
+git clone https://github.com/kpcoleman/SpaDecon
+cd SpaDecon/
+python3 setup.py install --user
+```
+
+## Tutorial
+A markdown tutorial file can be found here: https://github.com/kpcoleman/SpaDecon/blob/main/tutorial/Tutorial.md
+
+A tutorial in the form of a jupyter notebook can be found here: https://github.com/kpcoleman/SpaDecon/blob/main/tutorial/tutorial.ipynb
+
+
+
+## Software Requirements
+python >= 3.6
+keras==2.2.4
+pandas==1.2.4
+numpy==1.20.1
+scipy==1.6.2
+scanpy==1.7.0
+anndata==0.7.6
+sklearn
+tensorflow==1.14.0
+
+
+
+%package help
+Summary: Development documents and examples for SpaDecon
+Provides: python3-SpaDecon-doc
+%description help
+# SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning
+
+### Kyle Coleman, Jian Hu, Amelia Schroeder, Edward B. Lee, Mingyao Li*
+
+SpaDecon is a semi-supervised learning-based method developed to perform cell-type deconvolution on spatially resolved transcriptomics (SRT) datasets. SpaDecon has been shown to provide accurate cell-type deconvolution results for both Spatial Transcriptomics (ST) and 10X Visium SRT datasets. Annotated scRNA-seq gene expression data from the same type of tissue as the SRT data are required for deconvolution.
+
+![png](images/spadecon_workflow.png)
+
+## SpaDecon Installation
+- SpaDecon installation requires a python version of at least 3.6. The version of python can be checked by:
+```python
+import platform
+platform.python_version()
+```
+
+ '3.7.11'
+
+We recommend creating and activating a new conda environment when installing the SpaDecon package. For instance,
+```bash
+conda create -n SpaDecon python=3.7
+conda activate SpaDecon
+```
+
+There are mulitple ways to install SpaDecon:
+
+- Install SpaDecon using PyPI:
+
+```bash
+pip3 install SpaDecon
+```
+
+- Download and install SpaDecon package from GitHub:
+
+```bash
+git clone https://github.com/kpcoleman/SpaDecon
+cd SpaDecon/
+python3 setup.py install --user
+```
+
+## Tutorial
+A markdown tutorial file can be found here: https://github.com/kpcoleman/SpaDecon/blob/main/tutorial/Tutorial.md
+
+A tutorial in the form of a jupyter notebook can be found here: https://github.com/kpcoleman/SpaDecon/blob/main/tutorial/tutorial.ipynb
+
+
+
+## Software Requirements
+python >= 3.6
+keras==2.2.4
+pandas==1.2.4
+numpy==1.20.1
+scipy==1.6.2
+scanpy==1.7.0
+anndata==0.7.6
+sklearn
+tensorflow==1.14.0
+
+
+
+%prep
+%autosetup -n SpaDecon-1.1.2
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-SpaDecon -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.2-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..af6768a
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+46c5b3bccb52c2fb76c55aaa757479ec SpaDecon-1.1.2.tar.gz