summaryrefslogtreecommitdiff
path: root/python-adptc-lib.spec
diff options
context:
space:
mode:
Diffstat (limited to 'python-adptc-lib.spec')
-rw-r--r--python-adptc-lib.spec372
1 files changed, 372 insertions, 0 deletions
diff --git a/python-adptc-lib.spec b/python-adptc-lib.spec
new file mode 100644
index 0000000..d0e96e5
--- /dev/null
+++ b/python-adptc-lib.spec
@@ -0,0 +1,372 @@
+%global _empty_manifest_terminate_build 0
+Name: python-ADPTC-LIB
+Version: 0.0.7
+Release: 1
+Summary: 自适应密度峰值树聚类(Adaptive Density Peak Tree Clustering)
+License: MIT License
+URL: https://pypi.org/project/ADPTC-LIB/
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/0d/20/58fd440c18463dc9bb222d4e6af39b8fd11fb91768230058407e2674e9f8/ADPTC_LIB-0.0.7.tar.gz
+BuildArch: noarch
+
+
+%description
+<!--
+ * @Description:
+ * @Author: SongJ
+ * @Date: 2020-12-29 13:52:28
+ * @LastEditTime: 2021-04-12 10:44:01
+ * @LastEditors: SongJ
+-->
+
+## 自适应密度峰值树聚类(Adaptive Density Peak Tree Clustering)
+本算法是在快速搜索与发现密度峰值聚类算法(Clustering by fast search and find of density peaks)CFSFDP的基础上进行改进的成果,主要解决的问题有:
+- 手动选择聚类中心
+- 单簇多密度峰值导致类簇误分
+- 面向时空数据聚类时,无法顾及时空耦合
+### 原理:
+通过CFSFDP算法的核心概念:局部密度和斥群值,构建密度峰值树,通过直达点、连通点和切割点分离子树,达到类簇划分的目的。
+
+<img src="https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210409210616098.png" alt="image-20210409210616098" style="zoom: 80%;" />
+
+![image-20210409210731545](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210409210731545.png)
+
+![image-20210409212843640](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210409212843640.png)
+
+### 使用方法:
+#### 1. 安装:
+
+```python
+pip install ADPTC-LIB
+```
+
+#### 2. 空间数据聚类:
+
+```python
+import numpy as np
+from ADPTC_LIB.cluster import ADPTC
+from ADPTC_LIB import visual
+X = np.loadtxt(r"../test_data/Aggregation.txt", delimiter="\t")
+X = X[:,[0,1]]
+atdpc_obj = ADPTC(X)
+atdpc_obj.clustering(2)
+visual.show_result(atdpc_obj.labels,X,np.array(list(atdpc_obj.core_points)))
+```
+
+![image-20210410095608378](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210410095608378.png)
+
+#### 3. 空间属性数据聚类:
+
+```python
+from ADPTC_LIB.cluster import ADPTC
+from ADPTC_LIB import visual
+import xarray as xr
+import os
+import numpy as np
+filePath = os.path.join(r'Z:\regions_daily_010deg\\05\\2013.nc')
+dataset = xr.open_dataset(filePath)
+pre_ds = dataset['precipitation']
+lon = pre_ds.lon
+lat = pre_ds.lat
+lon_range = lon[(lon>-30)&(lon<70)]
+lat_range = lat[(lat>30)&(lat<90)]
+var = pre_ds.sel(lon=lon_range,lat = lat_range)
+var = var.resample(time='1M',skipna=True).sum()
+var_t = var.sel(time=var.time[0])
+reduced = var_t.coarsen(lon=5).mean().coarsen(lat=5).mean()
+data_nc = np.array(reduced)
+spatial_eps=4
+attr_eps=8
+density_metric='gauss'
+spre = ADPTC(data_nc)
+spre.spacial_clustering_raster(spatial_eps,attr_eps,density_metric,knn_num=100,leaf_size=3000,connect_eps=0.9)
+visual.show_result_2d(reduced,spre.labels)
+```
+
+![image-20210410104300578](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210410104300578.png)
+
+#### 4.时空属性聚类:
+
+```python
+from ADPTC_LIB.cluster import ADPTC
+from ADPTC_LIB import visual
+import xarray as xr
+import numpy as np
+temp= xr.open_dataset(r'Z:\MSWX\temp\2020.nc')
+temp_2020 = temp['air_temperature']
+lon = temp_2020.lon
+lat = temp_2020.lat
+time = temp_2020.time
+lon_range = lon[(lon>70)&(lon<140)]
+lat_range = lat[(lat>15)&(lat<55)]
+var = temp_2020.sel(lon=lon_range,lat = lat_range)
+reduced = var.coarsen(lon=5).mean().coarsen(lat=5).mean()
+data_nc = np.array(reduced)
+s_eps = 5
+t_eps = 1
+attr_eps = 2.5
+density_metric='gauss'
+spre = ADPTC(data_nc)
+spre.st_clustering_raster(s_eps,t_eps,attr_eps,density_metric,knn_num=100,leaf_size=3000,connect_eps=0.9)
+visual.show_result_3d(reduced,spre,[70, 140, 15, 50],[0,12],21)
+```
+
+![image-20210412095947596](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210412095947596.png)
+
+%package -n python3-ADPTC-LIB
+Summary: 自适应密度峰值树聚类(Adaptive Density Peak Tree Clustering)
+Provides: python-ADPTC-LIB
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-ADPTC-LIB
+<!--
+ * @Description:
+ * @Author: SongJ
+ * @Date: 2020-12-29 13:52:28
+ * @LastEditTime: 2021-04-12 10:44:01
+ * @LastEditors: SongJ
+-->
+
+## 自适应密度峰值树聚类(Adaptive Density Peak Tree Clustering)
+本算法是在快速搜索与发现密度峰值聚类算法(Clustering by fast search and find of density peaks)CFSFDP的基础上进行改进的成果,主要解决的问题有:
+- 手动选择聚类中心
+- 单簇多密度峰值导致类簇误分
+- 面向时空数据聚类时,无法顾及时空耦合
+### 原理:
+通过CFSFDP算法的核心概念:局部密度和斥群值,构建密度峰值树,通过直达点、连通点和切割点分离子树,达到类簇划分的目的。
+
+<img src="https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210409210616098.png" alt="image-20210409210616098" style="zoom: 80%;" />
+
+![image-20210409210731545](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210409210731545.png)
+
+![image-20210409212843640](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210409212843640.png)
+
+### 使用方法:
+#### 1. 安装:
+
+```python
+pip install ADPTC-LIB
+```
+
+#### 2. 空间数据聚类:
+
+```python
+import numpy as np
+from ADPTC_LIB.cluster import ADPTC
+from ADPTC_LIB import visual
+X = np.loadtxt(r"../test_data/Aggregation.txt", delimiter="\t")
+X = X[:,[0,1]]
+atdpc_obj = ADPTC(X)
+atdpc_obj.clustering(2)
+visual.show_result(atdpc_obj.labels,X,np.array(list(atdpc_obj.core_points)))
+```
+
+![image-20210410095608378](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210410095608378.png)
+
+#### 3. 空间属性数据聚类:
+
+```python
+from ADPTC_LIB.cluster import ADPTC
+from ADPTC_LIB import visual
+import xarray as xr
+import os
+import numpy as np
+filePath = os.path.join(r'Z:\regions_daily_010deg\\05\\2013.nc')
+dataset = xr.open_dataset(filePath)
+pre_ds = dataset['precipitation']
+lon = pre_ds.lon
+lat = pre_ds.lat
+lon_range = lon[(lon>-30)&(lon<70)]
+lat_range = lat[(lat>30)&(lat<90)]
+var = pre_ds.sel(lon=lon_range,lat = lat_range)
+var = var.resample(time='1M',skipna=True).sum()
+var_t = var.sel(time=var.time[0])
+reduced = var_t.coarsen(lon=5).mean().coarsen(lat=5).mean()
+data_nc = np.array(reduced)
+spatial_eps=4
+attr_eps=8
+density_metric='gauss'
+spre = ADPTC(data_nc)
+spre.spacial_clustering_raster(spatial_eps,attr_eps,density_metric,knn_num=100,leaf_size=3000,connect_eps=0.9)
+visual.show_result_2d(reduced,spre.labels)
+```
+
+![image-20210410104300578](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210410104300578.png)
+
+#### 4.时空属性聚类:
+
+```python
+from ADPTC_LIB.cluster import ADPTC
+from ADPTC_LIB import visual
+import xarray as xr
+import numpy as np
+temp= xr.open_dataset(r'Z:\MSWX\temp\2020.nc')
+temp_2020 = temp['air_temperature']
+lon = temp_2020.lon
+lat = temp_2020.lat
+time = temp_2020.time
+lon_range = lon[(lon>70)&(lon<140)]
+lat_range = lat[(lat>15)&(lat<55)]
+var = temp_2020.sel(lon=lon_range,lat = lat_range)
+reduced = var.coarsen(lon=5).mean().coarsen(lat=5).mean()
+data_nc = np.array(reduced)
+s_eps = 5
+t_eps = 1
+attr_eps = 2.5
+density_metric='gauss'
+spre = ADPTC(data_nc)
+spre.st_clustering_raster(s_eps,t_eps,attr_eps,density_metric,knn_num=100,leaf_size=3000,connect_eps=0.9)
+visual.show_result_3d(reduced,spre,[70, 140, 15, 50],[0,12],21)
+```
+
+![image-20210412095947596](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210412095947596.png)
+
+%package help
+Summary: Development documents and examples for ADPTC-LIB
+Provides: python3-ADPTC-LIB-doc
+%description help
+<!--
+ * @Description:
+ * @Author: SongJ
+ * @Date: 2020-12-29 13:52:28
+ * @LastEditTime: 2021-04-12 10:44:01
+ * @LastEditors: SongJ
+-->
+
+## 自适应密度峰值树聚类(Adaptive Density Peak Tree Clustering)
+本算法是在快速搜索与发现密度峰值聚类算法(Clustering by fast search and find of density peaks)CFSFDP的基础上进行改进的成果,主要解决的问题有:
+- 手动选择聚类中心
+- 单簇多密度峰值导致类簇误分
+- 面向时空数据聚类时,无法顾及时空耦合
+### 原理:
+通过CFSFDP算法的核心概念:局部密度和斥群值,构建密度峰值树,通过直达点、连通点和切割点分离子树,达到类簇划分的目的。
+
+<img src="https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210409210616098.png" alt="image-20210409210616098" style="zoom: 80%;" />
+
+![image-20210409210731545](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210409210731545.png)
+
+![image-20210409212843640](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210409212843640.png)
+
+### 使用方法:
+#### 1. 安装:
+
+```python
+pip install ADPTC-LIB
+```
+
+#### 2. 空间数据聚类:
+
+```python
+import numpy as np
+from ADPTC_LIB.cluster import ADPTC
+from ADPTC_LIB import visual
+X = np.loadtxt(r"../test_data/Aggregation.txt", delimiter="\t")
+X = X[:,[0,1]]
+atdpc_obj = ADPTC(X)
+atdpc_obj.clustering(2)
+visual.show_result(atdpc_obj.labels,X,np.array(list(atdpc_obj.core_points)))
+```
+
+![image-20210410095608378](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210410095608378.png)
+
+#### 3. 空间属性数据聚类:
+
+```python
+from ADPTC_LIB.cluster import ADPTC
+from ADPTC_LIB import visual
+import xarray as xr
+import os
+import numpy as np
+filePath = os.path.join(r'Z:\regions_daily_010deg\\05\\2013.nc')
+dataset = xr.open_dataset(filePath)
+pre_ds = dataset['precipitation']
+lon = pre_ds.lon
+lat = pre_ds.lat
+lon_range = lon[(lon>-30)&(lon<70)]
+lat_range = lat[(lat>30)&(lat<90)]
+var = pre_ds.sel(lon=lon_range,lat = lat_range)
+var = var.resample(time='1M',skipna=True).sum()
+var_t = var.sel(time=var.time[0])
+reduced = var_t.coarsen(lon=5).mean().coarsen(lat=5).mean()
+data_nc = np.array(reduced)
+spatial_eps=4
+attr_eps=8
+density_metric='gauss'
+spre = ADPTC(data_nc)
+spre.spacial_clustering_raster(spatial_eps,attr_eps,density_metric,knn_num=100,leaf_size=3000,connect_eps=0.9)
+visual.show_result_2d(reduced,spre.labels)
+```
+
+![image-20210410104300578](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210410104300578.png)
+
+#### 4.时空属性聚类:
+
+```python
+from ADPTC_LIB.cluster import ADPTC
+from ADPTC_LIB import visual
+import xarray as xr
+import numpy as np
+temp= xr.open_dataset(r'Z:\MSWX\temp\2020.nc')
+temp_2020 = temp['air_temperature']
+lon = temp_2020.lon
+lat = temp_2020.lat
+time = temp_2020.time
+lon_range = lon[(lon>70)&(lon<140)]
+lat_range = lat[(lat>15)&(lat<55)]
+var = temp_2020.sel(lon=lon_range,lat = lat_range)
+reduced = var.coarsen(lon=5).mean().coarsen(lat=5).mean()
+data_nc = np.array(reduced)
+s_eps = 5
+t_eps = 1
+attr_eps = 2.5
+density_metric='gauss'
+spre = ADPTC(data_nc)
+spre.st_clustering_raster(s_eps,t_eps,attr_eps,density_metric,knn_num=100,leaf_size=3000,connect_eps=0.9)
+visual.show_result_3d(reduced,spre,[70, 140, 15, 50],[0,12],21)
+```
+
+![image-20210412095947596](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210412095947596.png)
+
+%prep
+%autosetup -n ADPTC-LIB-0.0.7
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-ADPTC-LIB -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.7-1
+- Package Spec generated