1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
|
%global _empty_manifest_terminate_build 0
Name: python-adversarial-robustness-toolbox
Version: 1.14.0
Release: 1
Summary: Toolbox for adversarial machine learning.
License: MIT
URL: https://github.com/Trusted-AI/adversarial-robustness-toolbox
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/32/52/98469e81703162447154cdd9f2270e4f8ecc39ad6159e917c0767fad4937/adversarial-robustness-toolbox-1.14.0.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-scikit-learn
Requires: python3-six
Requires: python3-setuptools
Requires: python3-tqdm
Requires: python3-mxnet
Requires: python3-catboost
Requires: python3-lightgbm
Requires: python3-tensorflow
Requires: python3-tensorflow-addons
Requires: python3-h5py
Requires: python3-torch
Requires: python3-torchvision
Requires: python3-xgboost
Requires: python3-pandas
Requires: python3-kornia
Requires: python3-matplotlib
Requires: python3-Pillow
Requires: python3-statsmodels
Requires: python3-pydub
Requires: python3-resampy
Requires: python3-ffmpeg-python
Requires: python3-cma
Requires: python3-librosa
Requires: python3-opencv-python
Requires: python3-numba
Requires: python3-catboost
Requires: python3-sphinx
Requires: python3-sphinx-rtd-theme
Requires: python3-sphinx-autodoc-annotation
Requires: python3-sphinx-autodoc-typehints
Requires: python3-matplotlib
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-six
Requires: python3-scikit-learn
Requires: python3-Pillow
Requires: python3-GPy
Requires: python3-keras
Requires: python3-h5py
Requires: python3-lightgbm
Requires: python3-tensorflow-gpu
Requires: python3-lingvo
Requires: python3-pydub
Requires: python3-resampy
Requires: python3-librosa
Requires: python3-mxnet
Requires: python3-matplotlib
Requires: python3-Pillow
Requires: python3-statsmodels
Requires: python3-pydub
Requires: python3-resampy
Requires: python3-ffmpeg-python
Requires: python3-cma
Requires: python3-pandas
Requires: python3-librosa
Requires: python3-opencv-python
Requires: python3-pytest
Requires: python3-pytest-flake8
Requires: python3-pytest-mock
Requires: python3-pytest-cov
Requires: python3-codecov
Requires: python3-requests
Requires: python3-sortedcontainers
Requires: python3-numba
Requires: python3-torch
Requires: python3-torchvision
Requires: python3-torch
Requires: python3-torchvision
Requires: python3-torchaudio
Requires: python3-pydub
Requires: python3-resampy
Requires: python3-librosa
Requires: python3-torch
Requires: python3-torchvision
Requires: python3-kornia
Requires: python3-Pillow
Requires: python3-ffmpeg-python
Requires: python3-opencv-python
Requires: python3-tensorflow
Requires: python3-tensorflow-addons
Requires: python3-h5py
Requires: python3-tensorflow
Requires: python3-tensorflow-addons
Requires: python3-h5py
Requires: python3-pydub
Requires: python3-resampy
Requires: python3-librosa
Requires: python3-tensorflow
Requires: python3-tensorflow-addons
Requires: python3-h5py
Requires: python3-Pillow
Requires: python3-ffmpeg-python
Requires: python3-opencv-python
Requires: python3-xgboost
%description
# Adversarial Robustness Toolbox (ART) v1.14
<p align="center">
<img src="docs/images/art_lfai.png?raw=true" width="467" title="ART logo">
</p>
<br />


[](http://adversarial-robustness-toolbox.readthedocs.io/en/latest/?badge=latest)
[](https://badge.fury.io/py/adversarial-robustness-toolbox)
[](https://codecov.io/gh/Trusted-AI/adversarial-robustness-toolbox)
[](https://github.com/psf/black)
[](https://opensource.org/licenses/MIT)
[](https://pypi.org/project/adversarial-robustness-toolbox/)
[](https://ibm-art.slack.com/)
[](https://pepy.tech/project/adversarial-robustness-toolbox)
[](https://pepy.tech/project/adversarial-robustness-toolbox)
[](https://bestpractices.coreinfrastructure.org/projects/5090)
[中文README请按此处](README-cn.md)
<p align="center">
<img src="https://raw.githubusercontent.com/lfai/artwork/master/lfaidata-assets/lfaidata-project-badge/graduate/color/lfaidata-project-badge-graduate-color.png" alt="LF AI & Data" width="300"/>
</p>
Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART is hosted by the
[Linux Foundation AI & Data Foundation](https://lfaidata.foundation) (LF AI & Data). ART provides tools that enable
developers and researchers to defend and evaluate Machine Learning models and applications against the
adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning frameworks
(TensorFlow, Keras, PyTorch, MXNet, scikit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types
(images, tables, audio, video, etc.) and machine learning tasks (classification, object detection, speech recognition,
generation, certification, etc.).
## Adversarial Threats
<p align="center">
<img src="docs/images/adversarial_threats_attacker.png?raw=true" width="400" title="ART logo">
<img src="docs/images/adversarial_threats_art.png?raw=true" width="400" title="ART logo">
</p>
<br />
## ART for Red and Blue Teams (selection)
<p align="center">
<img src="docs/images/white_hat_blue_red.png?raw=true" width="800" title="ART Red and Blue Teams">
</p>
<br />
## Learn more
| **[Get Started][get-started]** | **[Documentation][documentation]** | **[Contributing][contributing]** |
|-------------------------------------|-------------------------------|-----------------------------------|
| - [Installation][installation]<br>- [Examples](examples/README.md)<br>- [Notebooks](notebooks/README.md) | - [Attacks][attacks]<br>- [Defences][defences]<br>- [Estimators][estimators]<br>- [Metrics][metrics]<br>- [Technical Documentation](https://adversarial-robustness-toolbox.readthedocs.io) | - [Slack](https://ibm-art.slack.com), [Invitation](https://join.slack.com/t/ibm-art/shared_invite/enQtMzkyOTkyODE4NzM4LTA4NGQ1OTMxMzFmY2Q1MzE1NWI2MmEzN2FjNGNjOGVlODVkZDE0MjA1NTA4OGVkMjVkNmQ4MTY1NmMyOGM5YTg)<br>- [Contributing](CONTRIBUTING.md)<br>- [Roadmap][roadmap]<br>- [Citing][citing] |
[get-started]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Get-Started
[attacks]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Attacks
[defences]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Defences
[estimators]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Estimators
[metrics]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Metrics
[contributing]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Contributing
[documentation]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Documentation
[installation]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Get-Started#setup
[roadmap]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Roadmap
[citing]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Contributing#citing-art
The library is under continuous development. Feedback, bug reports and contributions are very welcome!
# Acknowledgment
This material is partially based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under
Contract No. HR001120C0013. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the Defense Advanced Research Projects Agency (DARPA).
%package -n python3-adversarial-robustness-toolbox
Summary: Toolbox for adversarial machine learning.
Provides: python-adversarial-robustness-toolbox
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-adversarial-robustness-toolbox
# Adversarial Robustness Toolbox (ART) v1.14
<p align="center">
<img src="docs/images/art_lfai.png?raw=true" width="467" title="ART logo">
</p>
<br />


[](http://adversarial-robustness-toolbox.readthedocs.io/en/latest/?badge=latest)
[](https://badge.fury.io/py/adversarial-robustness-toolbox)
[](https://codecov.io/gh/Trusted-AI/adversarial-robustness-toolbox)
[](https://github.com/psf/black)
[](https://opensource.org/licenses/MIT)
[](https://pypi.org/project/adversarial-robustness-toolbox/)
[](https://ibm-art.slack.com/)
[](https://pepy.tech/project/adversarial-robustness-toolbox)
[](https://pepy.tech/project/adversarial-robustness-toolbox)
[](https://bestpractices.coreinfrastructure.org/projects/5090)
[中文README请按此处](README-cn.md)
<p align="center">
<img src="https://raw.githubusercontent.com/lfai/artwork/master/lfaidata-assets/lfaidata-project-badge/graduate/color/lfaidata-project-badge-graduate-color.png" alt="LF AI & Data" width="300"/>
</p>
Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART is hosted by the
[Linux Foundation AI & Data Foundation](https://lfaidata.foundation) (LF AI & Data). ART provides tools that enable
developers and researchers to defend and evaluate Machine Learning models and applications against the
adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning frameworks
(TensorFlow, Keras, PyTorch, MXNet, scikit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types
(images, tables, audio, video, etc.) and machine learning tasks (classification, object detection, speech recognition,
generation, certification, etc.).
## Adversarial Threats
<p align="center">
<img src="docs/images/adversarial_threats_attacker.png?raw=true" width="400" title="ART logo">
<img src="docs/images/adversarial_threats_art.png?raw=true" width="400" title="ART logo">
</p>
<br />
## ART for Red and Blue Teams (selection)
<p align="center">
<img src="docs/images/white_hat_blue_red.png?raw=true" width="800" title="ART Red and Blue Teams">
</p>
<br />
## Learn more
| **[Get Started][get-started]** | **[Documentation][documentation]** | **[Contributing][contributing]** |
|-------------------------------------|-------------------------------|-----------------------------------|
| - [Installation][installation]<br>- [Examples](examples/README.md)<br>- [Notebooks](notebooks/README.md) | - [Attacks][attacks]<br>- [Defences][defences]<br>- [Estimators][estimators]<br>- [Metrics][metrics]<br>- [Technical Documentation](https://adversarial-robustness-toolbox.readthedocs.io) | - [Slack](https://ibm-art.slack.com), [Invitation](https://join.slack.com/t/ibm-art/shared_invite/enQtMzkyOTkyODE4NzM4LTA4NGQ1OTMxMzFmY2Q1MzE1NWI2MmEzN2FjNGNjOGVlODVkZDE0MjA1NTA4OGVkMjVkNmQ4MTY1NmMyOGM5YTg)<br>- [Contributing](CONTRIBUTING.md)<br>- [Roadmap][roadmap]<br>- [Citing][citing] |
[get-started]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Get-Started
[attacks]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Attacks
[defences]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Defences
[estimators]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Estimators
[metrics]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Metrics
[contributing]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Contributing
[documentation]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Documentation
[installation]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Get-Started#setup
[roadmap]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Roadmap
[citing]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Contributing#citing-art
The library is under continuous development. Feedback, bug reports and contributions are very welcome!
# Acknowledgment
This material is partially based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under
Contract No. HR001120C0013. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the Defense Advanced Research Projects Agency (DARPA).
%package help
Summary: Development documents and examples for adversarial-robustness-toolbox
Provides: python3-adversarial-robustness-toolbox-doc
%description help
# Adversarial Robustness Toolbox (ART) v1.14
<p align="center">
<img src="docs/images/art_lfai.png?raw=true" width="467" title="ART logo">
</p>
<br />


[](http://adversarial-robustness-toolbox.readthedocs.io/en/latest/?badge=latest)
[](https://badge.fury.io/py/adversarial-robustness-toolbox)
[](https://codecov.io/gh/Trusted-AI/adversarial-robustness-toolbox)
[](https://github.com/psf/black)
[](https://opensource.org/licenses/MIT)
[](https://pypi.org/project/adversarial-robustness-toolbox/)
[](https://ibm-art.slack.com/)
[](https://pepy.tech/project/adversarial-robustness-toolbox)
[](https://pepy.tech/project/adversarial-robustness-toolbox)
[](https://bestpractices.coreinfrastructure.org/projects/5090)
[中文README请按此处](README-cn.md)
<p align="center">
<img src="https://raw.githubusercontent.com/lfai/artwork/master/lfaidata-assets/lfaidata-project-badge/graduate/color/lfaidata-project-badge-graduate-color.png" alt="LF AI & Data" width="300"/>
</p>
Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART is hosted by the
[Linux Foundation AI & Data Foundation](https://lfaidata.foundation) (LF AI & Data). ART provides tools that enable
developers and researchers to defend and evaluate Machine Learning models and applications against the
adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning frameworks
(TensorFlow, Keras, PyTorch, MXNet, scikit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types
(images, tables, audio, video, etc.) and machine learning tasks (classification, object detection, speech recognition,
generation, certification, etc.).
## Adversarial Threats
<p align="center">
<img src="docs/images/adversarial_threats_attacker.png?raw=true" width="400" title="ART logo">
<img src="docs/images/adversarial_threats_art.png?raw=true" width="400" title="ART logo">
</p>
<br />
## ART for Red and Blue Teams (selection)
<p align="center">
<img src="docs/images/white_hat_blue_red.png?raw=true" width="800" title="ART Red and Blue Teams">
</p>
<br />
## Learn more
| **[Get Started][get-started]** | **[Documentation][documentation]** | **[Contributing][contributing]** |
|-------------------------------------|-------------------------------|-----------------------------------|
| - [Installation][installation]<br>- [Examples](examples/README.md)<br>- [Notebooks](notebooks/README.md) | - [Attacks][attacks]<br>- [Defences][defences]<br>- [Estimators][estimators]<br>- [Metrics][metrics]<br>- [Technical Documentation](https://adversarial-robustness-toolbox.readthedocs.io) | - [Slack](https://ibm-art.slack.com), [Invitation](https://join.slack.com/t/ibm-art/shared_invite/enQtMzkyOTkyODE4NzM4LTA4NGQ1OTMxMzFmY2Q1MzE1NWI2MmEzN2FjNGNjOGVlODVkZDE0MjA1NTA4OGVkMjVkNmQ4MTY1NmMyOGM5YTg)<br>- [Contributing](CONTRIBUTING.md)<br>- [Roadmap][roadmap]<br>- [Citing][citing] |
[get-started]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Get-Started
[attacks]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Attacks
[defences]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Defences
[estimators]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Estimators
[metrics]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Metrics
[contributing]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Contributing
[documentation]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Documentation
[installation]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Get-Started#setup
[roadmap]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Roadmap
[citing]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Contributing#citing-art
The library is under continuous development. Feedback, bug reports and contributions are very welcome!
# Acknowledgment
This material is partially based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under
Contract No. HR001120C0013. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the Defense Advanced Research Projects Agency (DARPA).
%prep
%autosetup -n adversarial-robustness-toolbox-1.14.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-adversarial-robustness-toolbox -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed Apr 12 2023 Python_Bot <Python_Bot@openeuler.org> - 1.14.0-1
- Package Spec generated
|