1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
%global _empty_manifest_terminate_build 0
Name: python-ai-benchmark
Version: 0.1.2
Release: 1
Summary: AI Benchmark is an open source python library for evaluating AI performance of various hardware platforms, including CPUs, GPUs and TPUs.
License: Apache License Version 2.0
URL: http://ai-benchmark.com
Source0: https://mirrors.aliyun.com/pypi/web/packages/99/9e/6685285db14f407d5061e6022f96400f6fe958a70ba320472178151ded4b/ai-benchmark-0.1.2.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-psutil
Requires: python3-py-cpuinfo
Requires: python3-pillow
Requires: python3-setuptools
Requires: python3-requests
%description
[AI Benchmark Alpha](http://ai-benchmark.com/alpha) is an open source python library for evaluating AI performance of various hardware platforms, including CPUs, GPUs and TPUs. The benchmark is relying on [TensorFlow](https://www.tensorflow.org) machine learning library, and is providing a lightweight and accurate solution for assessing inference and training speed for key Deep Learning models.</br></br>
In total, AI Benchmark consists of <b>42 tests</b> and <b>19 sections</b> provided below:</br>
1. MobileNet-V2 `[classification]`
2. Inception-V3 `[classification]`
3. Inception-V4 `[classification]`
4. Inception-ResNet-V2 `[classification]`
5. ResNet-V2-50 `[classification]`
6. ResNet-V2-152 `[classification]`
7. VGG-16 `[classification]`
8. SRCNN 9-5-5 `[image-to-image mapping]`
9. VGG-19 `[image-to-image mapping]`
10. ResNet-SRGAN `[image-to-image mapping]`
11. ResNet-DPED `[image-to-image mapping]`
12. U-Net `[image-to-image mapping]`
13. Nvidia-SPADE `[image-to-image mapping]`
14. ICNet `[image segmentation]`
15. PSPNet `[image segmentation]`
16. DeepLab `[image segmentation]`
17. Pixel-RNN `[inpainting]`
18. LSTM `[sentence sentiment analysis]`
19. GNMT `[text translation]`
For more information and results, please visit the project website: [http://ai-benchmark.com/alpha](http://ai-benchmark.com/alpha)</br></br>
#### Installation Instructions </br>
The benchmark requires TensorFlow machine learning library to be present in your system.
On systems that <b>do not have Nvidia GPUs</b>, run the following commands to install AI Benchmark:
```bash
pip install tensorflow
pip install ai-benchmark
```
</br>
If you want to check the <b>performance of Nvidia graphic cards</b>, run the following commands:
```bash
pip install tensorflow-gpu
pip install ai-benchmark
```
<b>`Note 1:`</b> If Tensorflow is already installed in your system, you can skip the first command.
<b>`Note 2:`</b> For running the benchmark on Nvidia GPUs, <b>`NVIDIA CUDA`</b> and <b>`cuDNN`</b> libraries should be installed first. Please find detailed instructions [here](https://www.tensorflow.org/install/gpu). </br></br>
#### Getting Started </br>
To run AI Benchmark, use the following code:
```bash
from ai_benchmark import AIBenchmark
benchmark = AIBenchmark()
results = benchmark.run()
```
Alternatively, on Linux systems you can type `ai-benchmark` in the command line to start the tests.
To run inference or training only, use `benchmark.run_inference()` or `benchmark.run_training()`. </br></br>
#### Advanced settings </br>
```bash
AIBenchmark(use_CPU=None, verbose_level=1):
```
> use_CPU=`{True, False, None}`: whether to run the tests on CPUs (if tensorflow-gpu is installed)
> verbose_level=`{0, 1, 2, 3}`: run tests silently | with short summary | with information about each run | with TF logs
```bash
benchmark.run(precision="normal"):
```
> precision=`{"normal", "high"}`: if `high` is selected, the benchmark will execute 10 times more runs for each test.
</br>
### Additional Notes and Requirements </br>
GPU with at least 2GB of RAM is required for running inference tests / 4GB of RAM for training tests.
The benchmark is compatible with both `TensorFlow 1.x` and `2.x` versions. </br></br>
### Contacts </br>
Please contact `andrey@vision.ee.ethz.ch` for any feedback or information.
%package -n python3-ai-benchmark
Summary: AI Benchmark is an open source python library for evaluating AI performance of various hardware platforms, including CPUs, GPUs and TPUs.
Provides: python-ai-benchmark
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-ai-benchmark
[AI Benchmark Alpha](http://ai-benchmark.com/alpha) is an open source python library for evaluating AI performance of various hardware platforms, including CPUs, GPUs and TPUs. The benchmark is relying on [TensorFlow](https://www.tensorflow.org) machine learning library, and is providing a lightweight and accurate solution for assessing inference and training speed for key Deep Learning models.</br></br>
In total, AI Benchmark consists of <b>42 tests</b> and <b>19 sections</b> provided below:</br>
1. MobileNet-V2 `[classification]`
2. Inception-V3 `[classification]`
3. Inception-V4 `[classification]`
4. Inception-ResNet-V2 `[classification]`
5. ResNet-V2-50 `[classification]`
6. ResNet-V2-152 `[classification]`
7. VGG-16 `[classification]`
8. SRCNN 9-5-5 `[image-to-image mapping]`
9. VGG-19 `[image-to-image mapping]`
10. ResNet-SRGAN `[image-to-image mapping]`
11. ResNet-DPED `[image-to-image mapping]`
12. U-Net `[image-to-image mapping]`
13. Nvidia-SPADE `[image-to-image mapping]`
14. ICNet `[image segmentation]`
15. PSPNet `[image segmentation]`
16. DeepLab `[image segmentation]`
17. Pixel-RNN `[inpainting]`
18. LSTM `[sentence sentiment analysis]`
19. GNMT `[text translation]`
For more information and results, please visit the project website: [http://ai-benchmark.com/alpha](http://ai-benchmark.com/alpha)</br></br>
#### Installation Instructions </br>
The benchmark requires TensorFlow machine learning library to be present in your system.
On systems that <b>do not have Nvidia GPUs</b>, run the following commands to install AI Benchmark:
```bash
pip install tensorflow
pip install ai-benchmark
```
</br>
If you want to check the <b>performance of Nvidia graphic cards</b>, run the following commands:
```bash
pip install tensorflow-gpu
pip install ai-benchmark
```
<b>`Note 1:`</b> If Tensorflow is already installed in your system, you can skip the first command.
<b>`Note 2:`</b> For running the benchmark on Nvidia GPUs, <b>`NVIDIA CUDA`</b> and <b>`cuDNN`</b> libraries should be installed first. Please find detailed instructions [here](https://www.tensorflow.org/install/gpu). </br></br>
#### Getting Started </br>
To run AI Benchmark, use the following code:
```bash
from ai_benchmark import AIBenchmark
benchmark = AIBenchmark()
results = benchmark.run()
```
Alternatively, on Linux systems you can type `ai-benchmark` in the command line to start the tests.
To run inference or training only, use `benchmark.run_inference()` or `benchmark.run_training()`. </br></br>
#### Advanced settings </br>
```bash
AIBenchmark(use_CPU=None, verbose_level=1):
```
> use_CPU=`{True, False, None}`: whether to run the tests on CPUs (if tensorflow-gpu is installed)
> verbose_level=`{0, 1, 2, 3}`: run tests silently | with short summary | with information about each run | with TF logs
```bash
benchmark.run(precision="normal"):
```
> precision=`{"normal", "high"}`: if `high` is selected, the benchmark will execute 10 times more runs for each test.
</br>
### Additional Notes and Requirements </br>
GPU with at least 2GB of RAM is required for running inference tests / 4GB of RAM for training tests.
The benchmark is compatible with both `TensorFlow 1.x` and `2.x` versions. </br></br>
### Contacts </br>
Please contact `andrey@vision.ee.ethz.ch` for any feedback or information.
%package help
Summary: Development documents and examples for ai-benchmark
Provides: python3-ai-benchmark-doc
%description help
[AI Benchmark Alpha](http://ai-benchmark.com/alpha) is an open source python library for evaluating AI performance of various hardware platforms, including CPUs, GPUs and TPUs. The benchmark is relying on [TensorFlow](https://www.tensorflow.org) machine learning library, and is providing a lightweight and accurate solution for assessing inference and training speed for key Deep Learning models.</br></br>
In total, AI Benchmark consists of <b>42 tests</b> and <b>19 sections</b> provided below:</br>
1. MobileNet-V2 `[classification]`
2. Inception-V3 `[classification]`
3. Inception-V4 `[classification]`
4. Inception-ResNet-V2 `[classification]`
5. ResNet-V2-50 `[classification]`
6. ResNet-V2-152 `[classification]`
7. VGG-16 `[classification]`
8. SRCNN 9-5-5 `[image-to-image mapping]`
9. VGG-19 `[image-to-image mapping]`
10. ResNet-SRGAN `[image-to-image mapping]`
11. ResNet-DPED `[image-to-image mapping]`
12. U-Net `[image-to-image mapping]`
13. Nvidia-SPADE `[image-to-image mapping]`
14. ICNet `[image segmentation]`
15. PSPNet `[image segmentation]`
16. DeepLab `[image segmentation]`
17. Pixel-RNN `[inpainting]`
18. LSTM `[sentence sentiment analysis]`
19. GNMT `[text translation]`
For more information and results, please visit the project website: [http://ai-benchmark.com/alpha](http://ai-benchmark.com/alpha)</br></br>
#### Installation Instructions </br>
The benchmark requires TensorFlow machine learning library to be present in your system.
On systems that <b>do not have Nvidia GPUs</b>, run the following commands to install AI Benchmark:
```bash
pip install tensorflow
pip install ai-benchmark
```
</br>
If you want to check the <b>performance of Nvidia graphic cards</b>, run the following commands:
```bash
pip install tensorflow-gpu
pip install ai-benchmark
```
<b>`Note 1:`</b> If Tensorflow is already installed in your system, you can skip the first command.
<b>`Note 2:`</b> For running the benchmark on Nvidia GPUs, <b>`NVIDIA CUDA`</b> and <b>`cuDNN`</b> libraries should be installed first. Please find detailed instructions [here](https://www.tensorflow.org/install/gpu). </br></br>
#### Getting Started </br>
To run AI Benchmark, use the following code:
```bash
from ai_benchmark import AIBenchmark
benchmark = AIBenchmark()
results = benchmark.run()
```
Alternatively, on Linux systems you can type `ai-benchmark` in the command line to start the tests.
To run inference or training only, use `benchmark.run_inference()` or `benchmark.run_training()`. </br></br>
#### Advanced settings </br>
```bash
AIBenchmark(use_CPU=None, verbose_level=1):
```
> use_CPU=`{True, False, None}`: whether to run the tests on CPUs (if tensorflow-gpu is installed)
> verbose_level=`{0, 1, 2, 3}`: run tests silently | with short summary | with information about each run | with TF logs
```bash
benchmark.run(precision="normal"):
```
> precision=`{"normal", "high"}`: if `high` is selected, the benchmark will execute 10 times more runs for each test.
</br>
### Additional Notes and Requirements </br>
GPU with at least 2GB of RAM is required for running inference tests / 4GB of RAM for training tests.
The benchmark is compatible with both `TensorFlow 1.x` and `2.x` versions. </br></br>
### Contacts </br>
Please contact `andrey@vision.ee.ethz.ch` for any feedback or information.
%prep
%autosetup -n ai-benchmark-0.1.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-ai-benchmark -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.2-1
- Package Spec generated
|