summaryrefslogtreecommitdiff
path: root/python-aiodine.spec
blob: e6942a9c9e8de6f0597f0ee656d88e7879d2ddc7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
%global _empty_manifest_terminate_build 0
Name:		python-aiodine
Version:	1.2.9
Release:	1
Summary:	Async-first dependency injection library for Python
License:	MIT
URL:		https://github.com/bocadilloproject/aiodine
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/a1/eb/c30e29f49de818124f0342681598c4d8ed3c1285a76e0db174120b74d8f4/aiodine-1.2.9.tar.gz
BuildArch:	noarch

Requires:	python3-async-exit-stack
Requires:	python3-aiocontextvars

%description
# aiodine

[![python](https://img.shields.io/pypi/pyversions/aiodine.svg?logo=python&logoColor=fed749&colorB=3770a0&label=)](https://www.python.org)
[![pypi](https://img.shields.io/pypi/v/aiodine.svg)][pypi-url]
[![travis](https://img.shields.io/travis/bocadilloproject/aiodine.svg)](https://travis-ci.org/bocadilloproject/aiodine)
[![black](https://img.shields.io/badge/code_style-black-000000.svg)](https://github.com/ambv/black)
[![codecov](https://codecov.io/gh/bocadilloproject/aiodine/branch/master/graph/badge.svg)](https://codecov.io/gh/bocadilloproject/aiodine)
[![license](https://img.shields.io/pypi/l/aiodine.svg)][pypi-url]

[pypi-url]: https://pypi.org/project/aiodine/

aiodine provides async-first [dependency injection][di] in the style of [Pytest fixtures](https://docs.pytest.org/en/latest/fixture.html) for Python 3.6+.

- [Installation](#installation)
- [Concepts](#concepts)
- [Usage](#usage)
- [FAQ](#faq)
- [Changelog](#changelog)

## Installation

```bash
pip install "aiodine==1.*"
```

## Concepts

aiodine revolves around two concepts:

- **Providers** are in charge of setting up, returning and optionally cleaning up _resources_.
- **Consumers** can access these resources by declaring the provider as one of their parameters.

This approach is an implementation of [Dependency Injection][di] and makes providers and consumers:

- **Explicit**: referencing providers by name on the consumer's signature makes dependencies clear and predictable.
- **Modular**: a provider can itself consume other providers, allowing to build ecosystems of reusable (and replaceable) dependencies.
- **Flexible**: provided values are reused within a given scope, and providers and consumers support a variety of syntaxes (asynchronous/synchronous, function/generator) to make provisioning fun again.

aiodine is **async-first** in the sense that:

- It was made to work with coroutine functions and the async/await syntax.
- Consumers can only be called in an asynchronous setting.
- But provider and consumer functions can be regular Python functions and generators too, if only for convenience.

## Usage

### Providers

**Providers** make a _resource_ available to consumers within a certain _scope_. They are created by decorating a **provider function** with `@aiodine.provider`.

Here's a "hello world" provider:

```python
import aiodine

@aiodine.provider
async def hello():
    return "Hello, aiodine!"
```

Providers are available in two **scopes**:

- `function`: the provider's value is re-computed everytime it is consumed.
- `session`: the provider's value is computed only once (the first time it is consumed) and is reused in subsequent calls.

By default, providers are function-scoped.

### Consumers

Once a provider has been declared, it can be used by **consumers**. A consumer is built by decorating a **consumer function** with `@aiodine.consumer`. A consumer can declare a provider as one of its parameters and aiodine will inject it at runtime.

Here's an example consumer:

```python
@aiodine.consumer
async def show_friendly_message(hello):
    print(hello)
```

All aiodine consumers are asynchronous, so you'll need to run them in an asynchronous context:

```python
from asyncio import run

async def main():
    await show_friendly_message()

run(main())  # "Hello, aiodine!"
```

Of course, a consumer can declare non-provider parameters too. aiodine is smart enough to figure out which parameters should be injected via providers, and which should be expected from the callee.

```python
@aiodine.consumer
async def show_friendly_message(hello, repeat=1):
    for _ in range(repeat):
        print(hello)

async def main():
    await show_friendly_message(repeat=10)
```

### Providers consuming other providers

Providers are modular in the sense that they can themselves consume other providers.

For this to work however, providers need to be **frozen** first. This ensures that the dependency graph is correctly resolved regardless of the declaration order.

```python
import aiodine

@aiodine.provider
def email():
    return "user@example.net"

@aiodine.provider
async def send_email(email):
    print(f"Sending email to {email}…")

aiodine.freeze()  # <- Ensures that `send_email` has resolved `email`.
```

**Note**: it is safe to call `.freeze()` multiple times.

A context manager syntax is also available:

```python
import aiodine

with aiodine.exit_freeze():
    @aiodine.provider
    def email():
        return "user@example.net"

    @aiodine.provider
    async def send_email(email):
        print(f"Sending email to {email}…")
```

### Generator providers

Generator providers can be used to perform cleanup (finalization) operations after a provider has gone out of scope.

```python
import os
import aiodine

@aiodine.provider
async def complex_resource():
    print("setting up complex resource…")
    yield "complex"
    print("cleaning up complex resource…")
```

**Tip**: cleanup code is executed even if an exception occurred in the consumer, so there's no need to surround the `yield` statement with a `try/finally` block.

**Important**: session-scoped generator providers will only be cleaned up if using them in the context of a session. See [Sessions](#sessions) for details.

### Lazy async providers

Async providers are **eager** by default: their return value is awaited before being injected into the consumer.

You can mark a provider as **lazy** in order to defer awaiting the provided value to the consumer. This is useful when the provider needs to be conditionally evaluated.

```python
from asyncio import sleep
import aiodine

@aiodine.provider(lazy=True)
async def expensive_io_call():
    await sleep(10)
    return 42

@aiodine.consumer
async def compute(expensive_io_call, cache=None):
    if cache:
        return cache
    return await expensive_io_call
```

### Factory providers

Instead of returning a scalar value, factory providers return a _function_. Factory providers are useful to implement reusable providers that accept a variety of inputs.

> This is a _design pattern_ more than anything else. In fact, there's no extra code in aiodine to support this feature.

The following example defines a factory provider for a (simulated) database query:

```python
import aiodine

@aiodine.provider(scope="session")
async def notes():
    # Some hard-coded sticky notes.
    return [
        {"id": 1, "text": "Groceries"},
        {"id": 2, "text": "Make potatoe smash"},
    ]

@aiodine.provider
async def get_note(notes):
    async def _get_note(pk: int) -> list:
        try:
            # TODO: fetch from a database instead?
            return next(note for note in notes if note["id"] == pk)
        except StopIteration:
            raise ValueError(f"Note with ID {pk} does not exist.")

    return _get_note
```

Example usage in a consumer:

```python
@aiodine.consumer
async def show_note(pk: int, get_note):
    print(await get_note(pk))
```

**Tip**: you can combine factory providers with [generator providers](#generator-providers) to cleanup any resources the factory needs to use. Here's an example that provides temporary files and removes them on cleanup:

```python
import os
import aiodine

@aiodine.provider(scope="session")
def tmpfile():
    files = set()

    async def _create_tmpfile(path: str):
        with open(path, "w") as tmp:
            files.add(path)
            return tmp

    yield _create_tmpfile

    for path in files:
        os.remove(path)
```

### Using providers without declaring them as parameters

Sometimes, a consumer needs to use a provider but doesn't care about the value it returns. In these situations, you can use the `@useprovider` decorator and skip declaring it as a parameter.

**Tip**: the `@useprovider` decorator accepts a variable number of providers, which can be given by name or by reference.

```python
import os
import aiodine

@aiodine.provider
def cache():
    os.makedirs("cache", exist_ok=True)

@aiodine.provider
def debug_log_file():
    with open("debug.log", "w"):
        pass
    yield
    os.remove("debug.log")

@aiodine.consumer
@aiodine.useprovider("cache", debug_log_file)
async def build_index():
    ...
```

### Auto-used providers

Auto-used providers are **automatically activated** (within their configured scope) without having to declare them as a parameter in the consumer.

This can typically spare you from decorating all your consumers with an `@useprovider`.

For example, the auto-used provider below would result in printing the current date and time to the console every time a consumer is called.

```python
import datetime
import aiodine

@aiodine.provider(autouse=True)
async def logdatetime():
    print(datetime.now())
```

### Sessions

A **session** is the context in which _session providers_ live.

More specifically, session providers (resp. generator session providers) are instanciated (resp. setup) when entering a session, and destroyed (resp. cleaned up) when exiting the session.

To enter a session, use:

```python
await aiodine.enter_session()
```

To exit it:

```python
await aiodine.exit_session()
```

An async context manager syntax is also available:

```python
async with aiodine.session():
    ...
```

### Context providers

> **WARNING**: this is an experimental feature.

Context providers were introduced to solve the problem of injecting **context-local resources**. These resources are typically undefined at the time of provider declaration, but become well-defined when entering some kind of **context**.

This may sound abstract, so let's see an example before showing the usage of context providers.

#### Example

Let's say we're in a restaurant. There, a waiter executes orders submitted by customers. Each customer is given an `Order` object which they can `.write()` their desired menu items to.

In aiodine terminilogy, the waiter is the [provider](#providers) of the order, and the customer is a [consumer](#consumers).

During service, the waiter needs to listen to new customers, create a new `Order` object, provide it to the customer, execute the order as written by the customer, and destroy the executed order.

So, in this example, the **context** spans from when an order is created to when it is destroyed, and is specific to a given customer.

Here's what code simulating this situation on the waiter's side may look like:

```python
from asyncio import Queue

import aiodine

class Order:
    def write(self, item: str):
        ...

class Waiter:
    def __init__(self):
        self._order = None
        self.queue = Queue()

        # Create an `order` provider for customers to use.
        # NOTE: the actually provided value is not defined yet!
        @aiodine.provider
        def order():
            return self._order

    async def _execute(self, order: Order):
        ...

    async def _serve(self, customer):
        # NOTE: we've now entered the *context* of serving
        # a particular customer.

        # Create a new order that the customer can
        # via the `order` provider.
        self._order = Order()

        await customer()

        # Execute the order and destroy it.
        await self._execute(self._order)
        self._order = None

    async def start(self):
        while True:
            customer = await self.queue.get()
            await self._serve(customer)
```

It's important to note that customers can do _anything_ with the order. In particular, they may take some time to think about what they are going to order. In the meantime, the server will be listening to other customer calls. In this sense, this situation is an _asynchronous_ one.

An example customer code may look like this:

```python
from asyncio import sleep

@aiodine.consumer
def alice(order: Order):
    # Pondering while looking at the menu…
    await sleep(10)
    order.write("Pizza Margheritta")
```

Let's reflect on this for a second. Have you noticed that the waiter holds only _one_ reference to an `Order`? This means that the code works fine as long as only _one_ customer is served at a time.

But what if another customer, say `bob`, comes along while `alice` is thinking about what she'll order? With the current implementation, the waiter will simply _forget_ about `alice`'s order, and end up executing `bob`'s order twice. In short: we'll encounter a **race condition**.

By using a context provider, we transparently turn the waiter's `order` into a [context variable][contextvars] (a.k.a. `ContextVar`). It is local to the context of each customer, which solves the race condition.

[contextvars]: https://docs.python.org/3/library/contextvars.html

Here's how the code would then look like:

```python
import aiodine

class Waiter:
    def __init__(self):
        self.queue = Queue()
        self.provider = aiodine.create_context_provider("order")

    async def _execute(self, order: Order):
        ...

    async def _serve(self, customer):
        order = Order()
        with self.provider.assign(order=order):
            await customer()
            await self._execute(order)

    async def start(self):
        while True:
            customer = await self.queue.get()
            await self._serve(customer)
```

Note:

- Customers can use the `order` provider just like before. In fact, it was created when calling `.create_context_provider()`.
- The `order` is now **context-local**, i.e. its value won't be forgotten or scrambled if other customers come and make orders concurrently.

This situation may look trivial to some, but it is likely to be found in client/server architectures, including in web frameworks.

#### Usage

To create a context provider, use `aiodine.create_context_provider()`. This method accepts a variable number of arguments and returns a `ContextProvider`. Each argument is used as the name of a new [`@provider`](#providers) which provides the contents of a [`ContextVar`][contextvars] object.

```python
import aiodine

provider = aiodine.create_context_provider("first_name", "last_name")
```

Each context variable contains `None` initially. This means that consumers will receive `None` — unless they are called within the context of an `.assign()` block:

```python
with provider.assign(first_name="alice"):
    # Consumers called in this block will receive `"alice"`
    # if they consume the `first_name` provider.
    ...
```

## FAQ

### Why "aiodine"?

aiodine contains "aio" as in [asyncio], and "di" as in [Dependency Injection][di]. The last two letters end up making aiodine pronounce like [iodine], the chemical element.

[asyncio]: https://docs.python.org/3/library/asyncio.html
[di]: https://en.wikipedia.org/wiki/Dependency_injection
[iodine]: https://en.wikipedia.org/wiki/Iodine

## Changelog

See [CHANGELOG.md](https://github.com/bocadilloproject/aiodine/blob/master/CHANGELOG.md).

## License

MIT




%package -n python3-aiodine
Summary:	Async-first dependency injection library for Python
Provides:	python-aiodine
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-aiodine
# aiodine

[![python](https://img.shields.io/pypi/pyversions/aiodine.svg?logo=python&logoColor=fed749&colorB=3770a0&label=)](https://www.python.org)
[![pypi](https://img.shields.io/pypi/v/aiodine.svg)][pypi-url]
[![travis](https://img.shields.io/travis/bocadilloproject/aiodine.svg)](https://travis-ci.org/bocadilloproject/aiodine)
[![black](https://img.shields.io/badge/code_style-black-000000.svg)](https://github.com/ambv/black)
[![codecov](https://codecov.io/gh/bocadilloproject/aiodine/branch/master/graph/badge.svg)](https://codecov.io/gh/bocadilloproject/aiodine)
[![license](https://img.shields.io/pypi/l/aiodine.svg)][pypi-url]

[pypi-url]: https://pypi.org/project/aiodine/

aiodine provides async-first [dependency injection][di] in the style of [Pytest fixtures](https://docs.pytest.org/en/latest/fixture.html) for Python 3.6+.

- [Installation](#installation)
- [Concepts](#concepts)
- [Usage](#usage)
- [FAQ](#faq)
- [Changelog](#changelog)

## Installation

```bash
pip install "aiodine==1.*"
```

## Concepts

aiodine revolves around two concepts:

- **Providers** are in charge of setting up, returning and optionally cleaning up _resources_.
- **Consumers** can access these resources by declaring the provider as one of their parameters.

This approach is an implementation of [Dependency Injection][di] and makes providers and consumers:

- **Explicit**: referencing providers by name on the consumer's signature makes dependencies clear and predictable.
- **Modular**: a provider can itself consume other providers, allowing to build ecosystems of reusable (and replaceable) dependencies.
- **Flexible**: provided values are reused within a given scope, and providers and consumers support a variety of syntaxes (asynchronous/synchronous, function/generator) to make provisioning fun again.

aiodine is **async-first** in the sense that:

- It was made to work with coroutine functions and the async/await syntax.
- Consumers can only be called in an asynchronous setting.
- But provider and consumer functions can be regular Python functions and generators too, if only for convenience.

## Usage

### Providers

**Providers** make a _resource_ available to consumers within a certain _scope_. They are created by decorating a **provider function** with `@aiodine.provider`.

Here's a "hello world" provider:

```python
import aiodine

@aiodine.provider
async def hello():
    return "Hello, aiodine!"
```

Providers are available in two **scopes**:

- `function`: the provider's value is re-computed everytime it is consumed.
- `session`: the provider's value is computed only once (the first time it is consumed) and is reused in subsequent calls.

By default, providers are function-scoped.

### Consumers

Once a provider has been declared, it can be used by **consumers**. A consumer is built by decorating a **consumer function** with `@aiodine.consumer`. A consumer can declare a provider as one of its parameters and aiodine will inject it at runtime.

Here's an example consumer:

```python
@aiodine.consumer
async def show_friendly_message(hello):
    print(hello)
```

All aiodine consumers are asynchronous, so you'll need to run them in an asynchronous context:

```python
from asyncio import run

async def main():
    await show_friendly_message()

run(main())  # "Hello, aiodine!"
```

Of course, a consumer can declare non-provider parameters too. aiodine is smart enough to figure out which parameters should be injected via providers, and which should be expected from the callee.

```python
@aiodine.consumer
async def show_friendly_message(hello, repeat=1):
    for _ in range(repeat):
        print(hello)

async def main():
    await show_friendly_message(repeat=10)
```

### Providers consuming other providers

Providers are modular in the sense that they can themselves consume other providers.

For this to work however, providers need to be **frozen** first. This ensures that the dependency graph is correctly resolved regardless of the declaration order.

```python
import aiodine

@aiodine.provider
def email():
    return "user@example.net"

@aiodine.provider
async def send_email(email):
    print(f"Sending email to {email}…")

aiodine.freeze()  # <- Ensures that `send_email` has resolved `email`.
```

**Note**: it is safe to call `.freeze()` multiple times.

A context manager syntax is also available:

```python
import aiodine

with aiodine.exit_freeze():
    @aiodine.provider
    def email():
        return "user@example.net"

    @aiodine.provider
    async def send_email(email):
        print(f"Sending email to {email}…")
```

### Generator providers

Generator providers can be used to perform cleanup (finalization) operations after a provider has gone out of scope.

```python
import os
import aiodine

@aiodine.provider
async def complex_resource():
    print("setting up complex resource…")
    yield "complex"
    print("cleaning up complex resource…")
```

**Tip**: cleanup code is executed even if an exception occurred in the consumer, so there's no need to surround the `yield` statement with a `try/finally` block.

**Important**: session-scoped generator providers will only be cleaned up if using them in the context of a session. See [Sessions](#sessions) for details.

### Lazy async providers

Async providers are **eager** by default: their return value is awaited before being injected into the consumer.

You can mark a provider as **lazy** in order to defer awaiting the provided value to the consumer. This is useful when the provider needs to be conditionally evaluated.

```python
from asyncio import sleep
import aiodine

@aiodine.provider(lazy=True)
async def expensive_io_call():
    await sleep(10)
    return 42

@aiodine.consumer
async def compute(expensive_io_call, cache=None):
    if cache:
        return cache
    return await expensive_io_call
```

### Factory providers

Instead of returning a scalar value, factory providers return a _function_. Factory providers are useful to implement reusable providers that accept a variety of inputs.

> This is a _design pattern_ more than anything else. In fact, there's no extra code in aiodine to support this feature.

The following example defines a factory provider for a (simulated) database query:

```python
import aiodine

@aiodine.provider(scope="session")
async def notes():
    # Some hard-coded sticky notes.
    return [
        {"id": 1, "text": "Groceries"},
        {"id": 2, "text": "Make potatoe smash"},
    ]

@aiodine.provider
async def get_note(notes):
    async def _get_note(pk: int) -> list:
        try:
            # TODO: fetch from a database instead?
            return next(note for note in notes if note["id"] == pk)
        except StopIteration:
            raise ValueError(f"Note with ID {pk} does not exist.")

    return _get_note
```

Example usage in a consumer:

```python
@aiodine.consumer
async def show_note(pk: int, get_note):
    print(await get_note(pk))
```

**Tip**: you can combine factory providers with [generator providers](#generator-providers) to cleanup any resources the factory needs to use. Here's an example that provides temporary files and removes them on cleanup:

```python
import os
import aiodine

@aiodine.provider(scope="session")
def tmpfile():
    files = set()

    async def _create_tmpfile(path: str):
        with open(path, "w") as tmp:
            files.add(path)
            return tmp

    yield _create_tmpfile

    for path in files:
        os.remove(path)
```

### Using providers without declaring them as parameters

Sometimes, a consumer needs to use a provider but doesn't care about the value it returns. In these situations, you can use the `@useprovider` decorator and skip declaring it as a parameter.

**Tip**: the `@useprovider` decorator accepts a variable number of providers, which can be given by name or by reference.

```python
import os
import aiodine

@aiodine.provider
def cache():
    os.makedirs("cache", exist_ok=True)

@aiodine.provider
def debug_log_file():
    with open("debug.log", "w"):
        pass
    yield
    os.remove("debug.log")

@aiodine.consumer
@aiodine.useprovider("cache", debug_log_file)
async def build_index():
    ...
```

### Auto-used providers

Auto-used providers are **automatically activated** (within their configured scope) without having to declare them as a parameter in the consumer.

This can typically spare you from decorating all your consumers with an `@useprovider`.

For example, the auto-used provider below would result in printing the current date and time to the console every time a consumer is called.

```python
import datetime
import aiodine

@aiodine.provider(autouse=True)
async def logdatetime():
    print(datetime.now())
```

### Sessions

A **session** is the context in which _session providers_ live.

More specifically, session providers (resp. generator session providers) are instanciated (resp. setup) when entering a session, and destroyed (resp. cleaned up) when exiting the session.

To enter a session, use:

```python
await aiodine.enter_session()
```

To exit it:

```python
await aiodine.exit_session()
```

An async context manager syntax is also available:

```python
async with aiodine.session():
    ...
```

### Context providers

> **WARNING**: this is an experimental feature.

Context providers were introduced to solve the problem of injecting **context-local resources**. These resources are typically undefined at the time of provider declaration, but become well-defined when entering some kind of **context**.

This may sound abstract, so let's see an example before showing the usage of context providers.

#### Example

Let's say we're in a restaurant. There, a waiter executes orders submitted by customers. Each customer is given an `Order` object which they can `.write()` their desired menu items to.

In aiodine terminilogy, the waiter is the [provider](#providers) of the order, and the customer is a [consumer](#consumers).

During service, the waiter needs to listen to new customers, create a new `Order` object, provide it to the customer, execute the order as written by the customer, and destroy the executed order.

So, in this example, the **context** spans from when an order is created to when it is destroyed, and is specific to a given customer.

Here's what code simulating this situation on the waiter's side may look like:

```python
from asyncio import Queue

import aiodine

class Order:
    def write(self, item: str):
        ...

class Waiter:
    def __init__(self):
        self._order = None
        self.queue = Queue()

        # Create an `order` provider for customers to use.
        # NOTE: the actually provided value is not defined yet!
        @aiodine.provider
        def order():
            return self._order

    async def _execute(self, order: Order):
        ...

    async def _serve(self, customer):
        # NOTE: we've now entered the *context* of serving
        # a particular customer.

        # Create a new order that the customer can
        # via the `order` provider.
        self._order = Order()

        await customer()

        # Execute the order and destroy it.
        await self._execute(self._order)
        self._order = None

    async def start(self):
        while True:
            customer = await self.queue.get()
            await self._serve(customer)
```

It's important to note that customers can do _anything_ with the order. In particular, they may take some time to think about what they are going to order. In the meantime, the server will be listening to other customer calls. In this sense, this situation is an _asynchronous_ one.

An example customer code may look like this:

```python
from asyncio import sleep

@aiodine.consumer
def alice(order: Order):
    # Pondering while looking at the menu…
    await sleep(10)
    order.write("Pizza Margheritta")
```

Let's reflect on this for a second. Have you noticed that the waiter holds only _one_ reference to an `Order`? This means that the code works fine as long as only _one_ customer is served at a time.

But what if another customer, say `bob`, comes along while `alice` is thinking about what she'll order? With the current implementation, the waiter will simply _forget_ about `alice`'s order, and end up executing `bob`'s order twice. In short: we'll encounter a **race condition**.

By using a context provider, we transparently turn the waiter's `order` into a [context variable][contextvars] (a.k.a. `ContextVar`). It is local to the context of each customer, which solves the race condition.

[contextvars]: https://docs.python.org/3/library/contextvars.html

Here's how the code would then look like:

```python
import aiodine

class Waiter:
    def __init__(self):
        self.queue = Queue()
        self.provider = aiodine.create_context_provider("order")

    async def _execute(self, order: Order):
        ...

    async def _serve(self, customer):
        order = Order()
        with self.provider.assign(order=order):
            await customer()
            await self._execute(order)

    async def start(self):
        while True:
            customer = await self.queue.get()
            await self._serve(customer)
```

Note:

- Customers can use the `order` provider just like before. In fact, it was created when calling `.create_context_provider()`.
- The `order` is now **context-local**, i.e. its value won't be forgotten or scrambled if other customers come and make orders concurrently.

This situation may look trivial to some, but it is likely to be found in client/server architectures, including in web frameworks.

#### Usage

To create a context provider, use `aiodine.create_context_provider()`. This method accepts a variable number of arguments and returns a `ContextProvider`. Each argument is used as the name of a new [`@provider`](#providers) which provides the contents of a [`ContextVar`][contextvars] object.

```python
import aiodine

provider = aiodine.create_context_provider("first_name", "last_name")
```

Each context variable contains `None` initially. This means that consumers will receive `None` — unless they are called within the context of an `.assign()` block:

```python
with provider.assign(first_name="alice"):
    # Consumers called in this block will receive `"alice"`
    # if they consume the `first_name` provider.
    ...
```

## FAQ

### Why "aiodine"?

aiodine contains "aio" as in [asyncio], and "di" as in [Dependency Injection][di]. The last two letters end up making aiodine pronounce like [iodine], the chemical element.

[asyncio]: https://docs.python.org/3/library/asyncio.html
[di]: https://en.wikipedia.org/wiki/Dependency_injection
[iodine]: https://en.wikipedia.org/wiki/Iodine

## Changelog

See [CHANGELOG.md](https://github.com/bocadilloproject/aiodine/blob/master/CHANGELOG.md).

## License

MIT




%package help
Summary:	Development documents and examples for aiodine
Provides:	python3-aiodine-doc
%description help
# aiodine

[![python](https://img.shields.io/pypi/pyversions/aiodine.svg?logo=python&logoColor=fed749&colorB=3770a0&label=)](https://www.python.org)
[![pypi](https://img.shields.io/pypi/v/aiodine.svg)][pypi-url]
[![travis](https://img.shields.io/travis/bocadilloproject/aiodine.svg)](https://travis-ci.org/bocadilloproject/aiodine)
[![black](https://img.shields.io/badge/code_style-black-000000.svg)](https://github.com/ambv/black)
[![codecov](https://codecov.io/gh/bocadilloproject/aiodine/branch/master/graph/badge.svg)](https://codecov.io/gh/bocadilloproject/aiodine)
[![license](https://img.shields.io/pypi/l/aiodine.svg)][pypi-url]

[pypi-url]: https://pypi.org/project/aiodine/

aiodine provides async-first [dependency injection][di] in the style of [Pytest fixtures](https://docs.pytest.org/en/latest/fixture.html) for Python 3.6+.

- [Installation](#installation)
- [Concepts](#concepts)
- [Usage](#usage)
- [FAQ](#faq)
- [Changelog](#changelog)

## Installation

```bash
pip install "aiodine==1.*"
```

## Concepts

aiodine revolves around two concepts:

- **Providers** are in charge of setting up, returning and optionally cleaning up _resources_.
- **Consumers** can access these resources by declaring the provider as one of their parameters.

This approach is an implementation of [Dependency Injection][di] and makes providers and consumers:

- **Explicit**: referencing providers by name on the consumer's signature makes dependencies clear and predictable.
- **Modular**: a provider can itself consume other providers, allowing to build ecosystems of reusable (and replaceable) dependencies.
- **Flexible**: provided values are reused within a given scope, and providers and consumers support a variety of syntaxes (asynchronous/synchronous, function/generator) to make provisioning fun again.

aiodine is **async-first** in the sense that:

- It was made to work with coroutine functions and the async/await syntax.
- Consumers can only be called in an asynchronous setting.
- But provider and consumer functions can be regular Python functions and generators too, if only for convenience.

## Usage

### Providers

**Providers** make a _resource_ available to consumers within a certain _scope_. They are created by decorating a **provider function** with `@aiodine.provider`.

Here's a "hello world" provider:

```python
import aiodine

@aiodine.provider
async def hello():
    return "Hello, aiodine!"
```

Providers are available in two **scopes**:

- `function`: the provider's value is re-computed everytime it is consumed.
- `session`: the provider's value is computed only once (the first time it is consumed) and is reused in subsequent calls.

By default, providers are function-scoped.

### Consumers

Once a provider has been declared, it can be used by **consumers**. A consumer is built by decorating a **consumer function** with `@aiodine.consumer`. A consumer can declare a provider as one of its parameters and aiodine will inject it at runtime.

Here's an example consumer:

```python
@aiodine.consumer
async def show_friendly_message(hello):
    print(hello)
```

All aiodine consumers are asynchronous, so you'll need to run them in an asynchronous context:

```python
from asyncio import run

async def main():
    await show_friendly_message()

run(main())  # "Hello, aiodine!"
```

Of course, a consumer can declare non-provider parameters too. aiodine is smart enough to figure out which parameters should be injected via providers, and which should be expected from the callee.

```python
@aiodine.consumer
async def show_friendly_message(hello, repeat=1):
    for _ in range(repeat):
        print(hello)

async def main():
    await show_friendly_message(repeat=10)
```

### Providers consuming other providers

Providers are modular in the sense that they can themselves consume other providers.

For this to work however, providers need to be **frozen** first. This ensures that the dependency graph is correctly resolved regardless of the declaration order.

```python
import aiodine

@aiodine.provider
def email():
    return "user@example.net"

@aiodine.provider
async def send_email(email):
    print(f"Sending email to {email}…")

aiodine.freeze()  # <- Ensures that `send_email` has resolved `email`.
```

**Note**: it is safe to call `.freeze()` multiple times.

A context manager syntax is also available:

```python
import aiodine

with aiodine.exit_freeze():
    @aiodine.provider
    def email():
        return "user@example.net"

    @aiodine.provider
    async def send_email(email):
        print(f"Sending email to {email}…")
```

### Generator providers

Generator providers can be used to perform cleanup (finalization) operations after a provider has gone out of scope.

```python
import os
import aiodine

@aiodine.provider
async def complex_resource():
    print("setting up complex resource…")
    yield "complex"
    print("cleaning up complex resource…")
```

**Tip**: cleanup code is executed even if an exception occurred in the consumer, so there's no need to surround the `yield` statement with a `try/finally` block.

**Important**: session-scoped generator providers will only be cleaned up if using them in the context of a session. See [Sessions](#sessions) for details.

### Lazy async providers

Async providers are **eager** by default: their return value is awaited before being injected into the consumer.

You can mark a provider as **lazy** in order to defer awaiting the provided value to the consumer. This is useful when the provider needs to be conditionally evaluated.

```python
from asyncio import sleep
import aiodine

@aiodine.provider(lazy=True)
async def expensive_io_call():
    await sleep(10)
    return 42

@aiodine.consumer
async def compute(expensive_io_call, cache=None):
    if cache:
        return cache
    return await expensive_io_call
```

### Factory providers

Instead of returning a scalar value, factory providers return a _function_. Factory providers are useful to implement reusable providers that accept a variety of inputs.

> This is a _design pattern_ more than anything else. In fact, there's no extra code in aiodine to support this feature.

The following example defines a factory provider for a (simulated) database query:

```python
import aiodine

@aiodine.provider(scope="session")
async def notes():
    # Some hard-coded sticky notes.
    return [
        {"id": 1, "text": "Groceries"},
        {"id": 2, "text": "Make potatoe smash"},
    ]

@aiodine.provider
async def get_note(notes):
    async def _get_note(pk: int) -> list:
        try:
            # TODO: fetch from a database instead?
            return next(note for note in notes if note["id"] == pk)
        except StopIteration:
            raise ValueError(f"Note with ID {pk} does not exist.")

    return _get_note
```

Example usage in a consumer:

```python
@aiodine.consumer
async def show_note(pk: int, get_note):
    print(await get_note(pk))
```

**Tip**: you can combine factory providers with [generator providers](#generator-providers) to cleanup any resources the factory needs to use. Here's an example that provides temporary files and removes them on cleanup:

```python
import os
import aiodine

@aiodine.provider(scope="session")
def tmpfile():
    files = set()

    async def _create_tmpfile(path: str):
        with open(path, "w") as tmp:
            files.add(path)
            return tmp

    yield _create_tmpfile

    for path in files:
        os.remove(path)
```

### Using providers without declaring them as parameters

Sometimes, a consumer needs to use a provider but doesn't care about the value it returns. In these situations, you can use the `@useprovider` decorator and skip declaring it as a parameter.

**Tip**: the `@useprovider` decorator accepts a variable number of providers, which can be given by name or by reference.

```python
import os
import aiodine

@aiodine.provider
def cache():
    os.makedirs("cache", exist_ok=True)

@aiodine.provider
def debug_log_file():
    with open("debug.log", "w"):
        pass
    yield
    os.remove("debug.log")

@aiodine.consumer
@aiodine.useprovider("cache", debug_log_file)
async def build_index():
    ...
```

### Auto-used providers

Auto-used providers are **automatically activated** (within their configured scope) without having to declare them as a parameter in the consumer.

This can typically spare you from decorating all your consumers with an `@useprovider`.

For example, the auto-used provider below would result in printing the current date and time to the console every time a consumer is called.

```python
import datetime
import aiodine

@aiodine.provider(autouse=True)
async def logdatetime():
    print(datetime.now())
```

### Sessions

A **session** is the context in which _session providers_ live.

More specifically, session providers (resp. generator session providers) are instanciated (resp. setup) when entering a session, and destroyed (resp. cleaned up) when exiting the session.

To enter a session, use:

```python
await aiodine.enter_session()
```

To exit it:

```python
await aiodine.exit_session()
```

An async context manager syntax is also available:

```python
async with aiodine.session():
    ...
```

### Context providers

> **WARNING**: this is an experimental feature.

Context providers were introduced to solve the problem of injecting **context-local resources**. These resources are typically undefined at the time of provider declaration, but become well-defined when entering some kind of **context**.

This may sound abstract, so let's see an example before showing the usage of context providers.

#### Example

Let's say we're in a restaurant. There, a waiter executes orders submitted by customers. Each customer is given an `Order` object which they can `.write()` their desired menu items to.

In aiodine terminilogy, the waiter is the [provider](#providers) of the order, and the customer is a [consumer](#consumers).

During service, the waiter needs to listen to new customers, create a new `Order` object, provide it to the customer, execute the order as written by the customer, and destroy the executed order.

So, in this example, the **context** spans from when an order is created to when it is destroyed, and is specific to a given customer.

Here's what code simulating this situation on the waiter's side may look like:

```python
from asyncio import Queue

import aiodine

class Order:
    def write(self, item: str):
        ...

class Waiter:
    def __init__(self):
        self._order = None
        self.queue = Queue()

        # Create an `order` provider for customers to use.
        # NOTE: the actually provided value is not defined yet!
        @aiodine.provider
        def order():
            return self._order

    async def _execute(self, order: Order):
        ...

    async def _serve(self, customer):
        # NOTE: we've now entered the *context* of serving
        # a particular customer.

        # Create a new order that the customer can
        # via the `order` provider.
        self._order = Order()

        await customer()

        # Execute the order and destroy it.
        await self._execute(self._order)
        self._order = None

    async def start(self):
        while True:
            customer = await self.queue.get()
            await self._serve(customer)
```

It's important to note that customers can do _anything_ with the order. In particular, they may take some time to think about what they are going to order. In the meantime, the server will be listening to other customer calls. In this sense, this situation is an _asynchronous_ one.

An example customer code may look like this:

```python
from asyncio import sleep

@aiodine.consumer
def alice(order: Order):
    # Pondering while looking at the menu…
    await sleep(10)
    order.write("Pizza Margheritta")
```

Let's reflect on this for a second. Have you noticed that the waiter holds only _one_ reference to an `Order`? This means that the code works fine as long as only _one_ customer is served at a time.

But what if another customer, say `bob`, comes along while `alice` is thinking about what she'll order? With the current implementation, the waiter will simply _forget_ about `alice`'s order, and end up executing `bob`'s order twice. In short: we'll encounter a **race condition**.

By using a context provider, we transparently turn the waiter's `order` into a [context variable][contextvars] (a.k.a. `ContextVar`). It is local to the context of each customer, which solves the race condition.

[contextvars]: https://docs.python.org/3/library/contextvars.html

Here's how the code would then look like:

```python
import aiodine

class Waiter:
    def __init__(self):
        self.queue = Queue()
        self.provider = aiodine.create_context_provider("order")

    async def _execute(self, order: Order):
        ...

    async def _serve(self, customer):
        order = Order()
        with self.provider.assign(order=order):
            await customer()
            await self._execute(order)

    async def start(self):
        while True:
            customer = await self.queue.get()
            await self._serve(customer)
```

Note:

- Customers can use the `order` provider just like before. In fact, it was created when calling `.create_context_provider()`.
- The `order` is now **context-local**, i.e. its value won't be forgotten or scrambled if other customers come and make orders concurrently.

This situation may look trivial to some, but it is likely to be found in client/server architectures, including in web frameworks.

#### Usage

To create a context provider, use `aiodine.create_context_provider()`. This method accepts a variable number of arguments and returns a `ContextProvider`. Each argument is used as the name of a new [`@provider`](#providers) which provides the contents of a [`ContextVar`][contextvars] object.

```python
import aiodine

provider = aiodine.create_context_provider("first_name", "last_name")
```

Each context variable contains `None` initially. This means that consumers will receive `None` — unless they are called within the context of an `.assign()` block:

```python
with provider.assign(first_name="alice"):
    # Consumers called in this block will receive `"alice"`
    # if they consume the `first_name` provider.
    ...
```

## FAQ

### Why "aiodine"?

aiodine contains "aio" as in [asyncio], and "di" as in [Dependency Injection][di]. The last two letters end up making aiodine pronounce like [iodine], the chemical element.

[asyncio]: https://docs.python.org/3/library/asyncio.html
[di]: https://en.wikipedia.org/wiki/Dependency_injection
[iodine]: https://en.wikipedia.org/wiki/Iodine

## Changelog

See [CHANGELOG.md](https://github.com/bocadilloproject/aiodine/blob/master/CHANGELOG.md).

## License

MIT




%prep
%autosetup -n aiodine-1.2.9

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-aiodine -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu May 18 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2.9-1
- Package Spec generated