blob: cfa5d13d196314bce23e064cca3114b27f017008 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
|
%global _empty_manifest_terminate_build 0
Name: python-airflow-prometheus-exporter
Version: 1.0.8
Release: 1
Summary: Prometheus Exporter for Airflow Metrics
License: BSD 3-Clause
URL: https://github.com/robinhood/airflow_prometheus_exporter
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/2b/6a/ba5031cd8b10f9ed8cdc6915c2ec2366770a74268f7f8af367e412bb9040/airflow_prometheus_exporter-1.0.8.tar.gz
BuildArch: noarch
Requires: python3-apache-airflow
Requires: python3-prometheus-client
Requires: python3-bumpversion
Requires: python3-tox
Requires: python3-twine
%description
# Airflow Prometheus Exporter
[](https://travis-ci.org/robinhood/airflow-prometheus-exporter)
The Airflow Prometheus Exporter exposes various metrics about the Scheduler, DAGs and Tasks which helps improve the observability of an Airflow cluster.
The exporter is based on this [prometheus exporter for Airflow](https://github.com/epoch8/airflow-exporter).
## Requirements
The plugin has been tested with:
- Airflow >= 1.10.4
- Python 3.6+
The scheduler metrics assume that there is a DAG named `canary_dag`. In our setup, the `canary_dag` is a DAG which has a tasks which perform very simple actions such as establishing database connections. This DAG is used to test the uptime of the Airflow scheduler itself.
## Installation
The exporter can be installed as an Airflow Plugin using:
```pip install airflow-prometheus-exporter```
This should ideally be installed in your Airflow virtualenv.
## Metrics
Metrics will be available at
`http://<your_airflow_host_and_port>/admin/metrics/`
### Task Specific Metrics
#### `airflow_task_status`
Number of tasks with a specific status.
All the possible states are listed [here](https://github.com/apache/airflow/blob/master/airflow/utils/state.py#L46).
#### `airflow_task_duration`
Duration of successful tasks in seconds.
#### `airflow_task_fail_count`
Number of times a particular task has failed.
#### `airflow_xcom_param`
value of configurable parameter in xcom table
xcom fields is deserialized as a dictionary and if key is found for a paticular task-id, the value is reported as a guage
Add task / key combinations in config.yaml:
```bash
xcom_params:
-
task_id: abc
key: count
-
task_id: def
key: errors
```
a task_id of 'all' will match against all airflow tasks:
```
xcom_params:
-
task_id: all
key: count
```
### Dag Specific Metrics
#### `airflow_dag_status`
Number of DAGs with a specific status.
All the possible states are listed [here](https://github.com/apache/airflow/blob/master/airflow/utils/state.py#L59)
#### `airflow_dag_run_duration`
Duration of successful DagRun in seconds.
### Scheduler Metrics
#### `airflow_dag_scheduler_delay`
Scheduling delay for a DAG Run in seconds. This metric assumes there is a `canary_dag`.
The scheduling delay is measured as the delay between when a DAG is marked as `SCHEDULED` and when it actually starts `RUNNING`.
#### `airflow_task_scheduler_delay`
Scheduling delay for a Task in seconds. This metric assumes there is a `canary_dag`.
#### `airflow_num_queued_tasks`
Number of tasks in the `QUEUED` state at any given instance.
%package -n python3-airflow-prometheus-exporter
Summary: Prometheus Exporter for Airflow Metrics
Provides: python-airflow-prometheus-exporter
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-airflow-prometheus-exporter
# Airflow Prometheus Exporter
[](https://travis-ci.org/robinhood/airflow-prometheus-exporter)
The Airflow Prometheus Exporter exposes various metrics about the Scheduler, DAGs and Tasks which helps improve the observability of an Airflow cluster.
The exporter is based on this [prometheus exporter for Airflow](https://github.com/epoch8/airflow-exporter).
## Requirements
The plugin has been tested with:
- Airflow >= 1.10.4
- Python 3.6+
The scheduler metrics assume that there is a DAG named `canary_dag`. In our setup, the `canary_dag` is a DAG which has a tasks which perform very simple actions such as establishing database connections. This DAG is used to test the uptime of the Airflow scheduler itself.
## Installation
The exporter can be installed as an Airflow Plugin using:
```pip install airflow-prometheus-exporter```
This should ideally be installed in your Airflow virtualenv.
## Metrics
Metrics will be available at
`http://<your_airflow_host_and_port>/admin/metrics/`
### Task Specific Metrics
#### `airflow_task_status`
Number of tasks with a specific status.
All the possible states are listed [here](https://github.com/apache/airflow/blob/master/airflow/utils/state.py#L46).
#### `airflow_task_duration`
Duration of successful tasks in seconds.
#### `airflow_task_fail_count`
Number of times a particular task has failed.
#### `airflow_xcom_param`
value of configurable parameter in xcom table
xcom fields is deserialized as a dictionary and if key is found for a paticular task-id, the value is reported as a guage
Add task / key combinations in config.yaml:
```bash
xcom_params:
-
task_id: abc
key: count
-
task_id: def
key: errors
```
a task_id of 'all' will match against all airflow tasks:
```
xcom_params:
-
task_id: all
key: count
```
### Dag Specific Metrics
#### `airflow_dag_status`
Number of DAGs with a specific status.
All the possible states are listed [here](https://github.com/apache/airflow/blob/master/airflow/utils/state.py#L59)
#### `airflow_dag_run_duration`
Duration of successful DagRun in seconds.
### Scheduler Metrics
#### `airflow_dag_scheduler_delay`
Scheduling delay for a DAG Run in seconds. This metric assumes there is a `canary_dag`.
The scheduling delay is measured as the delay between when a DAG is marked as `SCHEDULED` and when it actually starts `RUNNING`.
#### `airflow_task_scheduler_delay`
Scheduling delay for a Task in seconds. This metric assumes there is a `canary_dag`.
#### `airflow_num_queued_tasks`
Number of tasks in the `QUEUED` state at any given instance.
%package help
Summary: Development documents and examples for airflow-prometheus-exporter
Provides: python3-airflow-prometheus-exporter-doc
%description help
# Airflow Prometheus Exporter
[](https://travis-ci.org/robinhood/airflow-prometheus-exporter)
The Airflow Prometheus Exporter exposes various metrics about the Scheduler, DAGs and Tasks which helps improve the observability of an Airflow cluster.
The exporter is based on this [prometheus exporter for Airflow](https://github.com/epoch8/airflow-exporter).
## Requirements
The plugin has been tested with:
- Airflow >= 1.10.4
- Python 3.6+
The scheduler metrics assume that there is a DAG named `canary_dag`. In our setup, the `canary_dag` is a DAG which has a tasks which perform very simple actions such as establishing database connections. This DAG is used to test the uptime of the Airflow scheduler itself.
## Installation
The exporter can be installed as an Airflow Plugin using:
```pip install airflow-prometheus-exporter```
This should ideally be installed in your Airflow virtualenv.
## Metrics
Metrics will be available at
`http://<your_airflow_host_and_port>/admin/metrics/`
### Task Specific Metrics
#### `airflow_task_status`
Number of tasks with a specific status.
All the possible states are listed [here](https://github.com/apache/airflow/blob/master/airflow/utils/state.py#L46).
#### `airflow_task_duration`
Duration of successful tasks in seconds.
#### `airflow_task_fail_count`
Number of times a particular task has failed.
#### `airflow_xcom_param`
value of configurable parameter in xcom table
xcom fields is deserialized as a dictionary and if key is found for a paticular task-id, the value is reported as a guage
Add task / key combinations in config.yaml:
```bash
xcom_params:
-
task_id: abc
key: count
-
task_id: def
key: errors
```
a task_id of 'all' will match against all airflow tasks:
```
xcom_params:
-
task_id: all
key: count
```
### Dag Specific Metrics
#### `airflow_dag_status`
Number of DAGs with a specific status.
All the possible states are listed [here](https://github.com/apache/airflow/blob/master/airflow/utils/state.py#L59)
#### `airflow_dag_run_duration`
Duration of successful DagRun in seconds.
### Scheduler Metrics
#### `airflow_dag_scheduler_delay`
Scheduling delay for a DAG Run in seconds. This metric assumes there is a `canary_dag`.
The scheduling delay is measured as the delay between when a DAG is marked as `SCHEDULED` and when it actually starts `RUNNING`.
#### `airflow_task_scheduler_delay`
Scheduling delay for a Task in seconds. This metric assumes there is a `canary_dag`.
#### `airflow_num_queued_tasks`
Number of tasks in the `QUEUED` state at any given instance.
%prep
%autosetup -n airflow-prometheus-exporter-1.0.8
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-airflow-prometheus-exporter -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Apr 21 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.8-1
- Package Spec generated
|