summaryrefslogtreecommitdiff
path: root/python-aix360.spec
blob: c7dcbb0e8e53ce3cda290951397c74a52aa060fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
%global _empty_manifest_terminate_build 0
Name:		python-aix360
Version:	0.2.1
Release:	1
Summary:	IBM AI Explainability 360
License:	Apache License 2.0
URL:		https://github.com/Trusted-AI/AIX360
Source0:	https://mirrors.aliyun.com/pypi/web/packages/e2/e6/a3dd79a986e3957cbafe5db1dae2d0daf8397d764a63e1767452e55c732a/aix360-0.2.1.tar.gz
BuildArch:	noarch

Requires:	python3-joblib
Requires:	python3-scikit-learn
Requires:	python3-torch
Requires:	python3-torchvision
Requires:	python3-cvxpy
Requires:	python3-cvxopt
Requires:	python3-Image
Requires:	python3-tensorflow
Requires:	python3-keras
Requires:	python3-matplotlib
Requires:	python3-numpy
Requires:	python3-pandas
Requires:	python3-scipy
Requires:	python3-xport
Requires:	python3-scikit-image
Requires:	python3-requests
Requires:	python3-xgboost
Requires:	python3-bleach
Requires:	python3-docutils
Requires:	python3-Pygments
Requires:	python3-qpsolvers
Requires:	python3-lime
Requires:	python3-shap

%description
# AI Explainability 360 (v0.2.0)

[![Build Status](https://travis-ci.com/Trusted-AI/AIX360.svg?branch=master)](https://travis-ci.com/Trusted-AI/AIX360)
[![Documentation Status](https://readthedocs.org/projects/aix360/badge/?version=latest)](https://aix360.readthedocs.io/en/latest/?badge=latest)
[![PyPI version](https://badge.fury.io/py/aix360.svg)](https://badge.fury.io/py/aix360)

The AI Explainability 360 toolkit is an open-source library that supports interpretability and explainability of datasets and machine learning models. The AI Explainability 360 Python package includes a comprehensive set of algorithms that cover different dimensions of explanations along with proxy explainability metrics.           

The [AI Explainability 360 interactive experience](http://aix360.mybluemix.net/data) provides a gentle introduction to the concepts and capabilities by walking through an example use case for different consumer personas. The [tutorials and example notebooks](./examples) offer a deeper, data scientist-oriented introduction. The complete API is also available. 

There is no single approach to explainability that works best. There are many ways to explain: data vs. model, directly interpretable vs. post hoc explanation, local vs. global, etc. It may therefore be confusing to figure out which algorithms are most appropriate for a given use case. To help, we have created some [guidance material](http://aix360.mybluemix.net/resources#guidance) and a [chart](./aix360/algorithms/README.md) that can be consulted. 

We have developed the package with extensibility in mind. This library is still in development. We encourage the contribution of your explainability algorithms and metrics. To get started as a contributor, please join the [AI Explainability 360 Community on Slack](https://aix360.slack.com) by requesting an invitation [here](https://join.slack.com/t/aix360/shared_invite/enQtNzEyOTAwOTk1NzY2LTM1ZTMwM2M4OWQzNjhmNGRiZjg3MmJiYTAzNDU1MTRiYTIyMjFhZTI4ZDUwM2M1MGYyODkwNzQ2OWQzMThlN2Q). Please review the instructions to contribute code [here](CONTRIBUTING.md).

## Supported explainability algorithms

### Data explanation

- ProtoDash ([Gurumoorthy et al., 2019](https://arxiv.org/abs/1707.01212))
- Disentangled Inferred Prior VAE ([Kumar et al., 2018](https://openreview.net/forum?id=H1kG7GZAW))

### Local post-hoc explanation 

- ProtoDash ([Gurumoorthy et al., 2019](https://arxiv.org/abs/1707.01212))
- Contrastive Explanations Method ([Dhurandhar et al., 2018](https://papers.nips.cc/paper/7340-explanations-based-on-the-missing-towards-contrastive-explanations-with-pertinent-negatives))
- Contrastive Explanations Method with Monotonic Attribute Functions ([Luss et al., 2019](https://arxiv.org/abs/1905.12698))
- LIME ([Ribeiro et al. 2016](https://arxiv.org/abs/1602.04938),  [Github](https://github.com/marcotcr/lime))
- SHAP ([Lundberg, et al. 2017](http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions),  [Github](https://github.com/slundberg/shap))

### Local direct explanation

- Teaching AI to Explain its Decisions ([Hind et al., 2019](https://doi.org/10.1145/3306618.3314273)) 

### Global direct explanation

- Boolean Decision Rules via Column Generation (Light Edition) ([Dash et al., 2018](https://papers.nips.cc/paper/7716-boolean-decision-rules-via-column-generation))
- Generalized Linear Rule Models ([Wei et al., 2019](http://proceedings.mlr.press/v97/wei19a.html))

### Global post-hoc explanation 

- ProfWeight ([Dhurandhar et al., 2018](https://papers.nips.cc/paper/8231-improving-simple-models-with-confidence-profiles))


## Supported explainability metrics
- Faithfulness ([Alvarez-Melis and Jaakkola, 2018](https://papers.nips.cc/paper/8003-towards-robust-interpretability-with-self-explaining-neural-networks))
- Monotonicity ([Luss et al., 2019](https://arxiv.org/abs/1905.12698))

## Setup

Supported Configurations:

| OS      | Python version |
| ------- | -------------- |
| macOS   | 3.6  |
| Ubuntu  | 3.6  |
| Windows | 3.6  |


### (Optional) Create a virtual environment

AI Explainability 360 requires specific versions of many Python packages which may conflict
with other projects on your system. A virtual environment manager is strongly
recommended to ensure dependencies may be installed safely. If you have trouble installing the toolkit, try this first.

#### Conda

Conda is recommended for all configurations though Virtualenv is generally
interchangeable for our purposes. Miniconda is sufficient (see [the difference between Anaconda and
Miniconda](https://conda.io/docs/user-guide/install/download.html#anaconda-or-miniconda)
if you are curious) and can be installed from
[here](https://conda.io/miniconda.html) if you do not already have it.

Then, to create a new Python 3.6 environment, run:

```bash
conda create --name aix360 python=3.6
conda activate aix360
```

The shell should now look like `(aix360) $`. To deactivate the environment, run:

```bash
(aix360)$ conda deactivate
```

The prompt will return back to `$ ` or `(base)$`.

Note: Older versions of conda may use `source activate aix360` and `source
deactivate` (`activate aix360` and `deactivate` on Windows).


### Installation

Clone the latest version of this repository:

```bash
(aix360)$ git clone https://github.com/Trusted-AI/AIX360
```

If you'd like to run the examples and tutorial notebooks, download the datasets now and place them in
their respective folders as described in
[aix360/data/README.md](aix360/data/README.md).

Then, navigate to the root directory of the project which contains `setup.py` file and run:

```bash
(aix360)$ pip install -e .
```

## Using AI Explainability 360

The `examples` directory contains a diverse collection of jupyter notebooks
that use AI Explainability 360 in various ways. Both examples and tutorial notebooks illustrate
working code using the toolkit. Tutorials provide additional discussion that walks
the user through the various steps of the notebook. See the details about
tutorials and examples [here](examples/README.md). 

## Citing AI Explainability 360

A technical description of AI Explainability 360 is available in this
[paper](https://arxiv.org/abs/1909.03012). Below is the bibtex entry for this
paper.

```
@misc{aix360-sept-2019,
title = "One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI Explainability Techniques",
author = {Vijay Arya and Rachel K. E. Bellamy and Pin-Yu Chen and Amit Dhurandhar and Michael Hind
and Samuel C. Hoffman and Stephanie Houde and Q. Vera Liao and Ronny Luss and Aleksandra Mojsilovi\'c
and Sami Mourad and Pablo Pedemonte and Ramya Raghavendra and John Richards and Prasanna Sattigeri
and Karthikeyan Shanmugam and Moninder Singh and Kush R. Varshney and Dennis Wei and Yunfeng Zhang},
month = sept,
year = {2019},
url = {https://arxiv.org/abs/1909.03012}
}
```

## AIX360 Videos

* Introductory [video](https://www.youtube.com/watch?v=Yn4yduyoQh4) to AI
  Explainability 360 by Vijay Arya and Amit Dhurandhar, September 5, 2019 (35 mins)

## Acknowledgements

AIX360 is built with the help of several open source packages. All of these are listed in setup.py and some of these include: 
* Tensorflow https://www.tensorflow.org/about/bib
* Pytorch https://github.com/pytorch/pytorch
* scikit-learn https://scikit-learn.org/stable/about.html

## License Information

Please view both the [LICENSE](https://github.com/vijay-arya/AIX360/blob/master/LICENSE) file and the folder [supplementary license](https://github.com/vijay-arya/AIX360/tree/master/supplementary%20license) present in the root directory for license information. 





%package -n python3-aix360
Summary:	IBM AI Explainability 360
Provides:	python-aix360
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-aix360
# AI Explainability 360 (v0.2.0)

[![Build Status](https://travis-ci.com/Trusted-AI/AIX360.svg?branch=master)](https://travis-ci.com/Trusted-AI/AIX360)
[![Documentation Status](https://readthedocs.org/projects/aix360/badge/?version=latest)](https://aix360.readthedocs.io/en/latest/?badge=latest)
[![PyPI version](https://badge.fury.io/py/aix360.svg)](https://badge.fury.io/py/aix360)

The AI Explainability 360 toolkit is an open-source library that supports interpretability and explainability of datasets and machine learning models. The AI Explainability 360 Python package includes a comprehensive set of algorithms that cover different dimensions of explanations along with proxy explainability metrics.           

The [AI Explainability 360 interactive experience](http://aix360.mybluemix.net/data) provides a gentle introduction to the concepts and capabilities by walking through an example use case for different consumer personas. The [tutorials and example notebooks](./examples) offer a deeper, data scientist-oriented introduction. The complete API is also available. 

There is no single approach to explainability that works best. There are many ways to explain: data vs. model, directly interpretable vs. post hoc explanation, local vs. global, etc. It may therefore be confusing to figure out which algorithms are most appropriate for a given use case. To help, we have created some [guidance material](http://aix360.mybluemix.net/resources#guidance) and a [chart](./aix360/algorithms/README.md) that can be consulted. 

We have developed the package with extensibility in mind. This library is still in development. We encourage the contribution of your explainability algorithms and metrics. To get started as a contributor, please join the [AI Explainability 360 Community on Slack](https://aix360.slack.com) by requesting an invitation [here](https://join.slack.com/t/aix360/shared_invite/enQtNzEyOTAwOTk1NzY2LTM1ZTMwM2M4OWQzNjhmNGRiZjg3MmJiYTAzNDU1MTRiYTIyMjFhZTI4ZDUwM2M1MGYyODkwNzQ2OWQzMThlN2Q). Please review the instructions to contribute code [here](CONTRIBUTING.md).

## Supported explainability algorithms

### Data explanation

- ProtoDash ([Gurumoorthy et al., 2019](https://arxiv.org/abs/1707.01212))
- Disentangled Inferred Prior VAE ([Kumar et al., 2018](https://openreview.net/forum?id=H1kG7GZAW))

### Local post-hoc explanation 

- ProtoDash ([Gurumoorthy et al., 2019](https://arxiv.org/abs/1707.01212))
- Contrastive Explanations Method ([Dhurandhar et al., 2018](https://papers.nips.cc/paper/7340-explanations-based-on-the-missing-towards-contrastive-explanations-with-pertinent-negatives))
- Contrastive Explanations Method with Monotonic Attribute Functions ([Luss et al., 2019](https://arxiv.org/abs/1905.12698))
- LIME ([Ribeiro et al. 2016](https://arxiv.org/abs/1602.04938),  [Github](https://github.com/marcotcr/lime))
- SHAP ([Lundberg, et al. 2017](http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions),  [Github](https://github.com/slundberg/shap))

### Local direct explanation

- Teaching AI to Explain its Decisions ([Hind et al., 2019](https://doi.org/10.1145/3306618.3314273)) 

### Global direct explanation

- Boolean Decision Rules via Column Generation (Light Edition) ([Dash et al., 2018](https://papers.nips.cc/paper/7716-boolean-decision-rules-via-column-generation))
- Generalized Linear Rule Models ([Wei et al., 2019](http://proceedings.mlr.press/v97/wei19a.html))

### Global post-hoc explanation 

- ProfWeight ([Dhurandhar et al., 2018](https://papers.nips.cc/paper/8231-improving-simple-models-with-confidence-profiles))


## Supported explainability metrics
- Faithfulness ([Alvarez-Melis and Jaakkola, 2018](https://papers.nips.cc/paper/8003-towards-robust-interpretability-with-self-explaining-neural-networks))
- Monotonicity ([Luss et al., 2019](https://arxiv.org/abs/1905.12698))

## Setup

Supported Configurations:

| OS      | Python version |
| ------- | -------------- |
| macOS   | 3.6  |
| Ubuntu  | 3.6  |
| Windows | 3.6  |


### (Optional) Create a virtual environment

AI Explainability 360 requires specific versions of many Python packages which may conflict
with other projects on your system. A virtual environment manager is strongly
recommended to ensure dependencies may be installed safely. If you have trouble installing the toolkit, try this first.

#### Conda

Conda is recommended for all configurations though Virtualenv is generally
interchangeable for our purposes. Miniconda is sufficient (see [the difference between Anaconda and
Miniconda](https://conda.io/docs/user-guide/install/download.html#anaconda-or-miniconda)
if you are curious) and can be installed from
[here](https://conda.io/miniconda.html) if you do not already have it.

Then, to create a new Python 3.6 environment, run:

```bash
conda create --name aix360 python=3.6
conda activate aix360
```

The shell should now look like `(aix360) $`. To deactivate the environment, run:

```bash
(aix360)$ conda deactivate
```

The prompt will return back to `$ ` or `(base)$`.

Note: Older versions of conda may use `source activate aix360` and `source
deactivate` (`activate aix360` and `deactivate` on Windows).


### Installation

Clone the latest version of this repository:

```bash
(aix360)$ git clone https://github.com/Trusted-AI/AIX360
```

If you'd like to run the examples and tutorial notebooks, download the datasets now and place them in
their respective folders as described in
[aix360/data/README.md](aix360/data/README.md).

Then, navigate to the root directory of the project which contains `setup.py` file and run:

```bash
(aix360)$ pip install -e .
```

## Using AI Explainability 360

The `examples` directory contains a diverse collection of jupyter notebooks
that use AI Explainability 360 in various ways. Both examples and tutorial notebooks illustrate
working code using the toolkit. Tutorials provide additional discussion that walks
the user through the various steps of the notebook. See the details about
tutorials and examples [here](examples/README.md). 

## Citing AI Explainability 360

A technical description of AI Explainability 360 is available in this
[paper](https://arxiv.org/abs/1909.03012). Below is the bibtex entry for this
paper.

```
@misc{aix360-sept-2019,
title = "One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI Explainability Techniques",
author = {Vijay Arya and Rachel K. E. Bellamy and Pin-Yu Chen and Amit Dhurandhar and Michael Hind
and Samuel C. Hoffman and Stephanie Houde and Q. Vera Liao and Ronny Luss and Aleksandra Mojsilovi\'c
and Sami Mourad and Pablo Pedemonte and Ramya Raghavendra and John Richards and Prasanna Sattigeri
and Karthikeyan Shanmugam and Moninder Singh and Kush R. Varshney and Dennis Wei and Yunfeng Zhang},
month = sept,
year = {2019},
url = {https://arxiv.org/abs/1909.03012}
}
```

## AIX360 Videos

* Introductory [video](https://www.youtube.com/watch?v=Yn4yduyoQh4) to AI
  Explainability 360 by Vijay Arya and Amit Dhurandhar, September 5, 2019 (35 mins)

## Acknowledgements

AIX360 is built with the help of several open source packages. All of these are listed in setup.py and some of these include: 
* Tensorflow https://www.tensorflow.org/about/bib
* Pytorch https://github.com/pytorch/pytorch
* scikit-learn https://scikit-learn.org/stable/about.html

## License Information

Please view both the [LICENSE](https://github.com/vijay-arya/AIX360/blob/master/LICENSE) file and the folder [supplementary license](https://github.com/vijay-arya/AIX360/tree/master/supplementary%20license) present in the root directory for license information. 





%package help
Summary:	Development documents and examples for aix360
Provides:	python3-aix360-doc
%description help
# AI Explainability 360 (v0.2.0)

[![Build Status](https://travis-ci.com/Trusted-AI/AIX360.svg?branch=master)](https://travis-ci.com/Trusted-AI/AIX360)
[![Documentation Status](https://readthedocs.org/projects/aix360/badge/?version=latest)](https://aix360.readthedocs.io/en/latest/?badge=latest)
[![PyPI version](https://badge.fury.io/py/aix360.svg)](https://badge.fury.io/py/aix360)

The AI Explainability 360 toolkit is an open-source library that supports interpretability and explainability of datasets and machine learning models. The AI Explainability 360 Python package includes a comprehensive set of algorithms that cover different dimensions of explanations along with proxy explainability metrics.           

The [AI Explainability 360 interactive experience](http://aix360.mybluemix.net/data) provides a gentle introduction to the concepts and capabilities by walking through an example use case for different consumer personas. The [tutorials and example notebooks](./examples) offer a deeper, data scientist-oriented introduction. The complete API is also available. 

There is no single approach to explainability that works best. There are many ways to explain: data vs. model, directly interpretable vs. post hoc explanation, local vs. global, etc. It may therefore be confusing to figure out which algorithms are most appropriate for a given use case. To help, we have created some [guidance material](http://aix360.mybluemix.net/resources#guidance) and a [chart](./aix360/algorithms/README.md) that can be consulted. 

We have developed the package with extensibility in mind. This library is still in development. We encourage the contribution of your explainability algorithms and metrics. To get started as a contributor, please join the [AI Explainability 360 Community on Slack](https://aix360.slack.com) by requesting an invitation [here](https://join.slack.com/t/aix360/shared_invite/enQtNzEyOTAwOTk1NzY2LTM1ZTMwM2M4OWQzNjhmNGRiZjg3MmJiYTAzNDU1MTRiYTIyMjFhZTI4ZDUwM2M1MGYyODkwNzQ2OWQzMThlN2Q). Please review the instructions to contribute code [here](CONTRIBUTING.md).

## Supported explainability algorithms

### Data explanation

- ProtoDash ([Gurumoorthy et al., 2019](https://arxiv.org/abs/1707.01212))
- Disentangled Inferred Prior VAE ([Kumar et al., 2018](https://openreview.net/forum?id=H1kG7GZAW))

### Local post-hoc explanation 

- ProtoDash ([Gurumoorthy et al., 2019](https://arxiv.org/abs/1707.01212))
- Contrastive Explanations Method ([Dhurandhar et al., 2018](https://papers.nips.cc/paper/7340-explanations-based-on-the-missing-towards-contrastive-explanations-with-pertinent-negatives))
- Contrastive Explanations Method with Monotonic Attribute Functions ([Luss et al., 2019](https://arxiv.org/abs/1905.12698))
- LIME ([Ribeiro et al. 2016](https://arxiv.org/abs/1602.04938),  [Github](https://github.com/marcotcr/lime))
- SHAP ([Lundberg, et al. 2017](http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions),  [Github](https://github.com/slundberg/shap))

### Local direct explanation

- Teaching AI to Explain its Decisions ([Hind et al., 2019](https://doi.org/10.1145/3306618.3314273)) 

### Global direct explanation

- Boolean Decision Rules via Column Generation (Light Edition) ([Dash et al., 2018](https://papers.nips.cc/paper/7716-boolean-decision-rules-via-column-generation))
- Generalized Linear Rule Models ([Wei et al., 2019](http://proceedings.mlr.press/v97/wei19a.html))

### Global post-hoc explanation 

- ProfWeight ([Dhurandhar et al., 2018](https://papers.nips.cc/paper/8231-improving-simple-models-with-confidence-profiles))


## Supported explainability metrics
- Faithfulness ([Alvarez-Melis and Jaakkola, 2018](https://papers.nips.cc/paper/8003-towards-robust-interpretability-with-self-explaining-neural-networks))
- Monotonicity ([Luss et al., 2019](https://arxiv.org/abs/1905.12698))

## Setup

Supported Configurations:

| OS      | Python version |
| ------- | -------------- |
| macOS   | 3.6  |
| Ubuntu  | 3.6  |
| Windows | 3.6  |


### (Optional) Create a virtual environment

AI Explainability 360 requires specific versions of many Python packages which may conflict
with other projects on your system. A virtual environment manager is strongly
recommended to ensure dependencies may be installed safely. If you have trouble installing the toolkit, try this first.

#### Conda

Conda is recommended for all configurations though Virtualenv is generally
interchangeable for our purposes. Miniconda is sufficient (see [the difference between Anaconda and
Miniconda](https://conda.io/docs/user-guide/install/download.html#anaconda-or-miniconda)
if you are curious) and can be installed from
[here](https://conda.io/miniconda.html) if you do not already have it.

Then, to create a new Python 3.6 environment, run:

```bash
conda create --name aix360 python=3.6
conda activate aix360
```

The shell should now look like `(aix360) $`. To deactivate the environment, run:

```bash
(aix360)$ conda deactivate
```

The prompt will return back to `$ ` or `(base)$`.

Note: Older versions of conda may use `source activate aix360` and `source
deactivate` (`activate aix360` and `deactivate` on Windows).


### Installation

Clone the latest version of this repository:

```bash
(aix360)$ git clone https://github.com/Trusted-AI/AIX360
```

If you'd like to run the examples and tutorial notebooks, download the datasets now and place them in
their respective folders as described in
[aix360/data/README.md](aix360/data/README.md).

Then, navigate to the root directory of the project which contains `setup.py` file and run:

```bash
(aix360)$ pip install -e .
```

## Using AI Explainability 360

The `examples` directory contains a diverse collection of jupyter notebooks
that use AI Explainability 360 in various ways. Both examples and tutorial notebooks illustrate
working code using the toolkit. Tutorials provide additional discussion that walks
the user through the various steps of the notebook. See the details about
tutorials and examples [here](examples/README.md). 

## Citing AI Explainability 360

A technical description of AI Explainability 360 is available in this
[paper](https://arxiv.org/abs/1909.03012). Below is the bibtex entry for this
paper.

```
@misc{aix360-sept-2019,
title = "One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI Explainability Techniques",
author = {Vijay Arya and Rachel K. E. Bellamy and Pin-Yu Chen and Amit Dhurandhar and Michael Hind
and Samuel C. Hoffman and Stephanie Houde and Q. Vera Liao and Ronny Luss and Aleksandra Mojsilovi\'c
and Sami Mourad and Pablo Pedemonte and Ramya Raghavendra and John Richards and Prasanna Sattigeri
and Karthikeyan Shanmugam and Moninder Singh and Kush R. Varshney and Dennis Wei and Yunfeng Zhang},
month = sept,
year = {2019},
url = {https://arxiv.org/abs/1909.03012}
}
```

## AIX360 Videos

* Introductory [video](https://www.youtube.com/watch?v=Yn4yduyoQh4) to AI
  Explainability 360 by Vijay Arya and Amit Dhurandhar, September 5, 2019 (35 mins)

## Acknowledgements

AIX360 is built with the help of several open source packages. All of these are listed in setup.py and some of these include: 
* Tensorflow https://www.tensorflow.org/about/bib
* Pytorch https://github.com/pytorch/pytorch
* scikit-learn https://scikit-learn.org/stable/about.html

## License Information

Please view both the [LICENSE](https://github.com/vijay-arya/AIX360/blob/master/LICENSE) file and the folder [supplementary license](https://github.com/vijay-arya/AIX360/tree/master/supplementary%20license) present in the root directory for license information. 





%prep
%autosetup -n aix360-0.2.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-aix360 -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.1-1
- Package Spec generated