diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-04-11 21:20:52 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-04-11 21:20:52 +0000 |
| commit | 75754549cae4146b7f0ed4f078c3fb4cb4095c4b (patch) | |
| tree | 820f87fbe6bde6438f4a6142415f7233c9fc859e | |
| parent | 991b408be1adaa41dc35d6fd4101cc3b73c94bb8 (diff) | |
automatic import of python-alibi
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-alibi.spec | 844 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 846 insertions, 0 deletions
@@ -0,0 +1 @@ +/alibi-0.9.1.tar.gz diff --git a/python-alibi.spec b/python-alibi.spec new file mode 100644 index 0000000..721a64c --- /dev/null +++ b/python-alibi.spec @@ -0,0 +1,844 @@ +%global _empty_manifest_terminate_build 0 +Name: python-alibi +Version: 0.9.1 +Release: 1 +Summary: Algorithms for monitoring and explaining machine learning models +License: Apache 2.0 +URL: https://github.com/SeldonIO/alibi +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/d6/23/3be3695d2b8e4f373af03c9894bf8eb15435b47d139747565cd684ed2bd4/alibi-0.9.1.tar.gz +BuildArch: noarch + +Requires: python3-numpy +Requires: python3-pandas +Requires: python3-scikit-learn +Requires: python3-spacy[lookups] +Requires: python3-blis +Requires: python3-scikit-image +Requires: python3-requests +Requires: python3-Pillow +Requires: python3-attrs +Requires: python3-scipy +Requires: python3-matplotlib +Requires: python3-typing-extensions +Requires: python3-dill +Requires: python3-transformers +Requires: python3-tqdm +Requires: python3-ray +Requires: python3-shap +Requires: python3-numba +Requires: python3-tensorflow +Requires: python3-torch +Requires: python3-ray +Requires: python3-shap +Requires: python3-numba +Requires: python3-tensorflow +Requires: python3-torch + +%description +[Alibi](https://docs.seldon.io/projects/alibi) is an open source Python library aimed at machine learning model inspection and interpretation. +The focus of the library is to provide high-quality implementations of black-box, white-box, local and global +explanation methods for classification and regression models. +* [Documentation](https://docs.seldon.io/projects/alibi/en/stable/) +If you're interested in outlier detection, concept drift or adversarial instance detection, check out our sister project [alibi-detect](https://github.com/SeldonIO/alibi-detect). +<table> + <tr valign="top"> + <td width="50%" > + <a href="https://docs.seldon.io/projects/alibi/en/stable/examples/anchor_image_imagenet.html"> + <br> + <b>Anchor explanations for images</b> + <br> + <br> + <img src="https://github.com/SeldonIO/alibi/raw/master/doc/source/_static/anchor_image.png"> + </a> + </td> + <td width="50%"> + <a href="https://docs.seldon.io/projects/alibi/en/stable/examples/integrated_gradients_imdb.html"> + <br> + <b>Integrated Gradients for text</b> + <br> + <br> + <img src="https://github.com/SeldonIO/alibi/raw/master/doc/source/_static/ig_text.png"> + </a> + </td> + </tr> + <tr valign="top"> + <td width="50%"> + <a href="https://docs.seldon.io/projects/alibi/en/stable/methods/CFProto.html"> + <br> + <b>Counterfactual examples</b> + <br> + <br> + <img src="https://github.com/SeldonIO/alibi/raw/master/doc/source/_static/cf.png"> + </a> + </td> + <td width="50%"> + <a href="https://docs.seldon.io/projects/alibi/en/stable/methods/ALE.html"> + <br> + <b>Accumulated Local Effects</b> + <br> + <br> + <img src="https://github.com/SeldonIO/alibi/raw/master/doc/source/_static/ale.png"> + </a> + </td> + </tr> +</table> +## Table of Contents +* [Installation and Usage](#installation-and-usage) +* [Supported Methods](#supported-methods) + * [Model Explanations](#model-explanations) + * [Model Confidence](#model-confidence) + * [Prototypes](#prototypes) + * [References and Examples](#references-and-examples) +* [Citations](#citations) +## Installation and Usage +Alibi can be installed from: +- PyPI or GitHub source (with `pip`) +- Anaconda (with `conda`/`mamba`) +### With pip +- Alibi can be installed from [PyPI](https://pypi.org/project/alibi): + ```bash + pip install alibi + ``` +- Alternatively, the development version can be installed: + ```bash + pip install git+https://github.com/SeldonIO/alibi.git + ``` +- To take advantage of distributed computation of explanations, install `alibi` with `ray`: + ```bash + pip install alibi[ray] + ``` +- For SHAP support, install `alibi` as follows: + ```bash + pip install alibi[shap] + ``` +### With conda +To install from [conda-forge](https://conda-forge.org/) it is recommended to use [mamba](https://mamba.readthedocs.io/en/stable/), +which can be installed to the *base* conda enviroment with: +```bash +conda install mamba -n base -c conda-forge +``` +- For the standard Alibi install: + ```bash + mamba install -c conda-forge alibi + ``` +- For distributed computing support: + ```bash + mamba install -c conda-forge alibi ray + ``` +- For SHAP support: + ```bash + mamba install -c conda-forge alibi shap + ``` +### Usage +The alibi explanation API takes inspiration from `scikit-learn`, consisting of distinct initialize, +fit and explain steps. We will use the [AnchorTabular](https://docs.seldon.io/projects/alibi/en/stable/methods/Anchors.html) +explainer to illustrate the API: +```python +from alibi.explainers import AnchorTabular +# initialize and fit explainer by passing a prediction function and any other required arguments +explainer = AnchorTabular(predict_fn, feature_names=feature_names, category_map=category_map) +explainer.fit(X_train) +# explain an instance +explanation = explainer.explain(x) +``` +The explanation returned is an `Explanation` object with attributes `meta` and `data`. `meta` is a dictionary +containing the explainer metadata and any hyperparameters and `data` is a dictionary containing everything +related to the computed explanation. For example, for the Anchor algorithm the explanation can be accessed +via `explanation.data['anchor']` (or `explanation.anchor`). The exact details of available fields varies +from method to method so we encourage the reader to become familiar with the +[types of methods supported](https://docs.seldon.io/projects/alibi/en/stable/overview/algorithms.html). +## Supported Methods +The following tables summarize the possible use cases for each method. +### Model Explanations +| Method | Models | Explanations | Classification | Regression | Tabular | Text | Images | Categorical features | Train set required | Distributed | +|:-------------------------------------------------------------------------------------------------------------|:------------:|:---------------------:|:--------------:|:----------:|:-------:|:----:|:------:|:--------------------:|:------------------:|:-----------:| +| [ALE](https://docs.seldon.io/projects/alibi/en/stable/methods/ALE.html) | BB | global | ✔ | ✔ | ✔ | | | | | | +| [Partial Dependence](https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependence.html) | BB WB | global | ✔ | ✔ | ✔ | | | ✔ | | | +| [PD Variance](https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependenceVariance.html) | BB WB | global | ✔ | ✔ | ✔ | | | ✔ | | | +| [Permutation Importance](https://docs.seldon.io/projects/alibi/en/stable/methods/PermutationImportance.html) | BB | global | ✔ | ✔ | ✔ | | | ✔ | | | +| [Anchors](https://docs.seldon.io/projects/alibi/en/stable/methods/Anchors.html) | BB | local | ✔ | | ✔ | ✔ | ✔ | ✔ | For Tabular | | +| [CEM](https://docs.seldon.io/projects/alibi/en/stable/methods/CEM.html) | BB* TF/Keras | local | ✔ | | ✔ | | ✔ | | Optional | | +| [Counterfactuals](https://docs.seldon.io/projects/alibi/en/stable/methods/CF.html) | BB* TF/Keras | local | ✔ | | ✔ | | ✔ | | No | | +| [Prototype Counterfactuals](https://docs.seldon.io/projects/alibi/en/stable/methods/CFProto.html) | BB* TF/Keras | local | ✔ | | ✔ | | ✔ | ✔ | Optional | | +| [Counterfactuals with RL](https://docs.seldon.io/projects/alibi/en/stable/methods/CFRL.html) | BB | local | ✔ | | ✔ | | ✔ | ✔ | ✔ | | +| [Integrated Gradients](https://docs.seldon.io/projects/alibi/en/stable/methods/IntegratedGradients.html) | TF/Keras | local | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | Optional | | +| [Kernel SHAP](https://docs.seldon.io/projects/alibi/en/stable/methods/KernelSHAP.html) | BB | local <br></br>global | ✔ | ✔ | ✔ | | | ✔ | ✔ | ✔ | +| [Tree SHAP](https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.html) | WB | local <br></br>global | ✔ | ✔ | ✔ | | | ✔ | Optional | | +| [Similarity explanations](https://docs.seldon.io/projects/alibi/en/stable/methods/Similarity.html) | WB | local | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | | +### Model Confidence +These algorithms provide **instance-specific** scores measuring the model confidence for making a +particular prediction. +|Method|Models|Classification|Regression|Tabular|Text|Images|Categorical Features|Train set required| +|:---|:---|:---:|:---:|:---:|:---:|:---:|:---:|:---| +|[Trust Scores](https://docs.seldon.io/projects/alibi/en/stable/methods/TrustScores.html)|BB|✔| |✔|✔(1)|✔(2)| |Yes| +|[Linearity Measure](https://docs.seldon.io/projects/alibi/en/stable/methods/LinearityMeasure.html)|BB|✔|✔|✔| |✔| |Optional| +Key: + - **BB** - black-box (only require a prediction function) + - **BB\*** - black-box but assume model is differentiable + - **WB** - requires white-box model access. There may be limitations on models supported + - **TF/Keras** - TensorFlow models via the Keras API + - **Local** - instance specific explanation, why was this prediction made? + - **Global** - explains the model with respect to a set of instances + - **(1)** - depending on model + - **(2)** - may require dimensionality reduction +### Prototypes +These algorithms provide a **distilled** view of the dataset and help construct a 1-KNN **interpretable** classifier. +|Method|Classification|Regression|Tabular|Text|Images|Categorical Features|Train set labels| +|:-----|:-------------|:---------|:------|:---|:-----|:-------------------|:---------------| +|[ProtoSelect](https://docs.seldon.io/projects/alibi/en/latest/methods/ProtoSelect.html)|✔| |✔|✔|✔|✔| Optional | +## References and Examples +- Accumulated Local Effects (ALE, [Apley and Zhu, 2016](https://arxiv.org/abs/1612.08468)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/ALE.html) + - Examples: + [California housing dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/ale_regression_california.html), + [Iris dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/ale_classification.html) +- Partial Dependence ([J.H. Friedman, 2001](https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boostingmachine/10.1214/aos/1013203451.full)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependence.html) + - Examples: + [Bike rental](https://docs.seldon.io/projects/alibi/en/stable/examples/pdp_regression_bike.html) +- Partial Dependence Variance([Greenwell et al., 2018](https://arxiv.org/abs/1805.04755)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependenceVariance.html) + - Examples: + [Friedman’s regression problem](https://docs.seldon.io/projects/alibi/en/stable/examples/pd_variance_regression_friedman.html) +- Permutation Importance([Breiman, 2001](https://link.springer.com/article/10.1023/A:1010933404324); [Fisher et al., 2018](https://arxiv.org/abs/1801.01489)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/PermutationImportance.html) + - Examples: + [Who's Going to Leave Next?](https://docs.seldon.io/projects/alibi/en/stable/examples/permutation_importance_classification_leave.html) +- Anchor explanations ([Ribeiro et al., 2018](https://homes.cs.washington.edu/~marcotcr/aaai18.pdf)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/Anchors.html) + - Examples: + [income prediction](https://docs.seldon.io/projects/alibi/en/stable/examples/anchor_tabular_adult.html), + [Iris dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/anchor_tabular_iris.html), + [movie sentiment classification](https://docs.seldon.io/projects/alibi/en/stable/examples/anchor_text_movie.html), + [ImageNet](https://docs.seldon.io/projects/alibi/en/stable/examples/anchor_image_imagenet.html), + [fashion MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/anchor_image_fashion_mnist.html) +- Contrastive Explanation Method (CEM, [Dhurandhar et al., 2018](https://papers.nips.cc/paper/7340-explanations-based-on-the-missing-towards-contrastive-explanations-with-pertinent-negatives)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/CEM.html) + - Examples: [MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/cem_mnist.html), + [Iris dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/cem_iris.html) +- Counterfactual Explanations (extension of + [Wachter et al., 2017](https://arxiv.org/abs/1711.00399)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/CF.html) + - Examples: + [MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/cf_mnist.html) +- Counterfactual Explanations Guided by Prototypes ([Van Looveren and Klaise, 2019](https://arxiv.org/abs/1907.02584)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/CFProto.html) + - Examples: + [MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/cfproto_mnist.html), + [California housing dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/cfproto_housing.html), + [Adult income (one-hot)](https://docs.seldon.io/projects/alibi/en/stable/examples/cfproto_cat_adult_ohe.html), + [Adult income (ordinal)](https://docs.seldon.io/projects/alibi/en/stable/examples/cfproto_cat_adult_ord.html) +- Model-agnostic Counterfactual Explanations via RL([Samoilescu et al., 2021](https://arxiv.org/abs/2106.02597)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/CFRL.html) + - Examples: + [MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/cfrl_mnist.html), + [Adult income](https://docs.seldon.io/projects/alibi/en/stable/examples/cfrl_adult.html) +- Integrated Gradients ([Sundararajan et al., 2017](https://arxiv.org/abs/1703.01365)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/IntegratedGradients.html), + - Examples: + [MNIST example](https://docs.seldon.io/projects/alibi/en/stable/examples/integrated_gradients_mnist.html), + [Imagenet example](https://docs.seldon.io/projects/alibi/en/stable/examples/integrated_gradients_imagenet.html), + [IMDB example](https://docs.seldon.io/projects/alibi/en/stable/examples/integrated_gradients_imdb.html). +- Kernel Shapley Additive Explanations ([Lundberg et al., 2017](https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/KernelSHAP.html) + - Examples: + [SVM with continuous data](https://docs.seldon.io/projects/alibi/en/stable/examples/kernel_shap_wine_intro.html), + [multinomial logistic regression with continous data](https://docs.seldon.io/projects/alibi/en/stable/examples/kernel_shap_wine_lr.html), + [handling categorical variables](https://docs.seldon.io/projects/alibi/en/stable/examples/kernel_shap_adult_lr.html) +- Tree Shapley Additive Explanations ([Lundberg et al., 2020](https://www.nature.com/articles/s42256-019-0138-9)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.html) + - Examples: + [Interventional (adult income, xgboost)](https://docs.seldon.io/projects/alibi/en/stable/examples/interventional_tree_shap_adult_xgb.html), + [Path-dependent (adult income, xgboost)](https://docs.seldon.io/projects/alibi/en/stable/examples/path_dependent_tree_shap_adult_xgb.html) +- Trust Scores ([Jiang et al., 2018](https://arxiv.org/abs/1805.11783)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/TrustScores.html) + - Examples: + [MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/trustscore_mnist.html), + [Iris dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/trustscore_mnist.html) +- Linearity Measure + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/LinearityMeasure.html) + - Examples: + [Iris dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/linearity_measure_iris.html), + [fashion MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/linearity_measure_fashion_mnist.html) +- ProtoSelect + - [Documentation](https://docs.seldon.io/projects/alibi/en/latest/methods/ProtoSelect.html) + - Examples: + [Adult Census & CIFAR10](https://docs.seldon.io/projects/alibi/en/latest/examples/protoselect_adult_cifar10.html) +- Similarity explanations + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/Similarity.html) + - Examples: + [20 news groups dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/similarity_explanations_20ng.html), + [ImageNet dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/similarity_explanations_imagenet.html), + [MNIST dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/similarity_explanations_mnist.html) +## Citations +If you use alibi in your research, please consider citing it. +BibTeX entry: +``` +@article{JMLR:v22:21-0017, + author = {Janis Klaise and Arnaud Van Looveren and Giovanni Vacanti and Alexandru Coca}, + title = {Alibi Explain: Algorithms for Explaining Machine Learning Models}, + journal = {Journal of Machine Learning Research}, + year = {2021}, + volume = {22}, + number = {181}, + pages = {1-7}, + url = {http://jmlr.org/papers/v22/21-0017.html} +} +``` + +%package -n python3-alibi +Summary: Algorithms for monitoring and explaining machine learning models +Provides: python-alibi +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-alibi +[Alibi](https://docs.seldon.io/projects/alibi) is an open source Python library aimed at machine learning model inspection and interpretation. +The focus of the library is to provide high-quality implementations of black-box, white-box, local and global +explanation methods for classification and regression models. +* [Documentation](https://docs.seldon.io/projects/alibi/en/stable/) +If you're interested in outlier detection, concept drift or adversarial instance detection, check out our sister project [alibi-detect](https://github.com/SeldonIO/alibi-detect). +<table> + <tr valign="top"> + <td width="50%" > + <a href="https://docs.seldon.io/projects/alibi/en/stable/examples/anchor_image_imagenet.html"> + <br> + <b>Anchor explanations for images</b> + <br> + <br> + <img src="https://github.com/SeldonIO/alibi/raw/master/doc/source/_static/anchor_image.png"> + </a> + </td> + <td width="50%"> + <a href="https://docs.seldon.io/projects/alibi/en/stable/examples/integrated_gradients_imdb.html"> + <br> + <b>Integrated Gradients for text</b> + <br> + <br> + <img src="https://github.com/SeldonIO/alibi/raw/master/doc/source/_static/ig_text.png"> + </a> + </td> + </tr> + <tr valign="top"> + <td width="50%"> + <a href="https://docs.seldon.io/projects/alibi/en/stable/methods/CFProto.html"> + <br> + <b>Counterfactual examples</b> + <br> + <br> + <img src="https://github.com/SeldonIO/alibi/raw/master/doc/source/_static/cf.png"> + </a> + </td> + <td width="50%"> + <a href="https://docs.seldon.io/projects/alibi/en/stable/methods/ALE.html"> + <br> + <b>Accumulated Local Effects</b> + <br> + <br> + <img src="https://github.com/SeldonIO/alibi/raw/master/doc/source/_static/ale.png"> + </a> + </td> + </tr> +</table> +## Table of Contents +* [Installation and Usage](#installation-and-usage) +* [Supported Methods](#supported-methods) + * [Model Explanations](#model-explanations) + * [Model Confidence](#model-confidence) + * [Prototypes](#prototypes) + * [References and Examples](#references-and-examples) +* [Citations](#citations) +## Installation and Usage +Alibi can be installed from: +- PyPI or GitHub source (with `pip`) +- Anaconda (with `conda`/`mamba`) +### With pip +- Alibi can be installed from [PyPI](https://pypi.org/project/alibi): + ```bash + pip install alibi + ``` +- Alternatively, the development version can be installed: + ```bash + pip install git+https://github.com/SeldonIO/alibi.git + ``` +- To take advantage of distributed computation of explanations, install `alibi` with `ray`: + ```bash + pip install alibi[ray] + ``` +- For SHAP support, install `alibi` as follows: + ```bash + pip install alibi[shap] + ``` +### With conda +To install from [conda-forge](https://conda-forge.org/) it is recommended to use [mamba](https://mamba.readthedocs.io/en/stable/), +which can be installed to the *base* conda enviroment with: +```bash +conda install mamba -n base -c conda-forge +``` +- For the standard Alibi install: + ```bash + mamba install -c conda-forge alibi + ``` +- For distributed computing support: + ```bash + mamba install -c conda-forge alibi ray + ``` +- For SHAP support: + ```bash + mamba install -c conda-forge alibi shap + ``` +### Usage +The alibi explanation API takes inspiration from `scikit-learn`, consisting of distinct initialize, +fit and explain steps. We will use the [AnchorTabular](https://docs.seldon.io/projects/alibi/en/stable/methods/Anchors.html) +explainer to illustrate the API: +```python +from alibi.explainers import AnchorTabular +# initialize and fit explainer by passing a prediction function and any other required arguments +explainer = AnchorTabular(predict_fn, feature_names=feature_names, category_map=category_map) +explainer.fit(X_train) +# explain an instance +explanation = explainer.explain(x) +``` +The explanation returned is an `Explanation` object with attributes `meta` and `data`. `meta` is a dictionary +containing the explainer metadata and any hyperparameters and `data` is a dictionary containing everything +related to the computed explanation. For example, for the Anchor algorithm the explanation can be accessed +via `explanation.data['anchor']` (or `explanation.anchor`). The exact details of available fields varies +from method to method so we encourage the reader to become familiar with the +[types of methods supported](https://docs.seldon.io/projects/alibi/en/stable/overview/algorithms.html). +## Supported Methods +The following tables summarize the possible use cases for each method. +### Model Explanations +| Method | Models | Explanations | Classification | Regression | Tabular | Text | Images | Categorical features | Train set required | Distributed | +|:-------------------------------------------------------------------------------------------------------------|:------------:|:---------------------:|:--------------:|:----------:|:-------:|:----:|:------:|:--------------------:|:------------------:|:-----------:| +| [ALE](https://docs.seldon.io/projects/alibi/en/stable/methods/ALE.html) | BB | global | ✔ | ✔ | ✔ | | | | | | +| [Partial Dependence](https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependence.html) | BB WB | global | ✔ | ✔ | ✔ | | | ✔ | | | +| [PD Variance](https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependenceVariance.html) | BB WB | global | ✔ | ✔ | ✔ | | | ✔ | | | +| [Permutation Importance](https://docs.seldon.io/projects/alibi/en/stable/methods/PermutationImportance.html) | BB | global | ✔ | ✔ | ✔ | | | ✔ | | | +| [Anchors](https://docs.seldon.io/projects/alibi/en/stable/methods/Anchors.html) | BB | local | ✔ | | ✔ | ✔ | ✔ | ✔ | For Tabular | | +| [CEM](https://docs.seldon.io/projects/alibi/en/stable/methods/CEM.html) | BB* TF/Keras | local | ✔ | | ✔ | | ✔ | | Optional | | +| [Counterfactuals](https://docs.seldon.io/projects/alibi/en/stable/methods/CF.html) | BB* TF/Keras | local | ✔ | | ✔ | | ✔ | | No | | +| [Prototype Counterfactuals](https://docs.seldon.io/projects/alibi/en/stable/methods/CFProto.html) | BB* TF/Keras | local | ✔ | | ✔ | | ✔ | ✔ | Optional | | +| [Counterfactuals with RL](https://docs.seldon.io/projects/alibi/en/stable/methods/CFRL.html) | BB | local | ✔ | | ✔ | | ✔ | ✔ | ✔ | | +| [Integrated Gradients](https://docs.seldon.io/projects/alibi/en/stable/methods/IntegratedGradients.html) | TF/Keras | local | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | Optional | | +| [Kernel SHAP](https://docs.seldon.io/projects/alibi/en/stable/methods/KernelSHAP.html) | BB | local <br></br>global | ✔ | ✔ | ✔ | | | ✔ | ✔ | ✔ | +| [Tree SHAP](https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.html) | WB | local <br></br>global | ✔ | ✔ | ✔ | | | ✔ | Optional | | +| [Similarity explanations](https://docs.seldon.io/projects/alibi/en/stable/methods/Similarity.html) | WB | local | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | | +### Model Confidence +These algorithms provide **instance-specific** scores measuring the model confidence for making a +particular prediction. +|Method|Models|Classification|Regression|Tabular|Text|Images|Categorical Features|Train set required| +|:---|:---|:---:|:---:|:---:|:---:|:---:|:---:|:---| +|[Trust Scores](https://docs.seldon.io/projects/alibi/en/stable/methods/TrustScores.html)|BB|✔| |✔|✔(1)|✔(2)| |Yes| +|[Linearity Measure](https://docs.seldon.io/projects/alibi/en/stable/methods/LinearityMeasure.html)|BB|✔|✔|✔| |✔| |Optional| +Key: + - **BB** - black-box (only require a prediction function) + - **BB\*** - black-box but assume model is differentiable + - **WB** - requires white-box model access. There may be limitations on models supported + - **TF/Keras** - TensorFlow models via the Keras API + - **Local** - instance specific explanation, why was this prediction made? + - **Global** - explains the model with respect to a set of instances + - **(1)** - depending on model + - **(2)** - may require dimensionality reduction +### Prototypes +These algorithms provide a **distilled** view of the dataset and help construct a 1-KNN **interpretable** classifier. +|Method|Classification|Regression|Tabular|Text|Images|Categorical Features|Train set labels| +|:-----|:-------------|:---------|:------|:---|:-----|:-------------------|:---------------| +|[ProtoSelect](https://docs.seldon.io/projects/alibi/en/latest/methods/ProtoSelect.html)|✔| |✔|✔|✔|✔| Optional | +## References and Examples +- Accumulated Local Effects (ALE, [Apley and Zhu, 2016](https://arxiv.org/abs/1612.08468)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/ALE.html) + - Examples: + [California housing dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/ale_regression_california.html), + [Iris dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/ale_classification.html) +- Partial Dependence ([J.H. Friedman, 2001](https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boostingmachine/10.1214/aos/1013203451.full)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependence.html) + - Examples: + [Bike rental](https://docs.seldon.io/projects/alibi/en/stable/examples/pdp_regression_bike.html) +- Partial Dependence Variance([Greenwell et al., 2018](https://arxiv.org/abs/1805.04755)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependenceVariance.html) + - Examples: + [Friedman’s regression problem](https://docs.seldon.io/projects/alibi/en/stable/examples/pd_variance_regression_friedman.html) +- Permutation Importance([Breiman, 2001](https://link.springer.com/article/10.1023/A:1010933404324); [Fisher et al., 2018](https://arxiv.org/abs/1801.01489)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/PermutationImportance.html) + - Examples: + [Who's Going to Leave Next?](https://docs.seldon.io/projects/alibi/en/stable/examples/permutation_importance_classification_leave.html) +- Anchor explanations ([Ribeiro et al., 2018](https://homes.cs.washington.edu/~marcotcr/aaai18.pdf)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/Anchors.html) + - Examples: + [income prediction](https://docs.seldon.io/projects/alibi/en/stable/examples/anchor_tabular_adult.html), + [Iris dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/anchor_tabular_iris.html), + [movie sentiment classification](https://docs.seldon.io/projects/alibi/en/stable/examples/anchor_text_movie.html), + [ImageNet](https://docs.seldon.io/projects/alibi/en/stable/examples/anchor_image_imagenet.html), + [fashion MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/anchor_image_fashion_mnist.html) +- Contrastive Explanation Method (CEM, [Dhurandhar et al., 2018](https://papers.nips.cc/paper/7340-explanations-based-on-the-missing-towards-contrastive-explanations-with-pertinent-negatives)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/CEM.html) + - Examples: [MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/cem_mnist.html), + [Iris dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/cem_iris.html) +- Counterfactual Explanations (extension of + [Wachter et al., 2017](https://arxiv.org/abs/1711.00399)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/CF.html) + - Examples: + [MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/cf_mnist.html) +- Counterfactual Explanations Guided by Prototypes ([Van Looveren and Klaise, 2019](https://arxiv.org/abs/1907.02584)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/CFProto.html) + - Examples: + [MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/cfproto_mnist.html), + [California housing dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/cfproto_housing.html), + [Adult income (one-hot)](https://docs.seldon.io/projects/alibi/en/stable/examples/cfproto_cat_adult_ohe.html), + [Adult income (ordinal)](https://docs.seldon.io/projects/alibi/en/stable/examples/cfproto_cat_adult_ord.html) +- Model-agnostic Counterfactual Explanations via RL([Samoilescu et al., 2021](https://arxiv.org/abs/2106.02597)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/CFRL.html) + - Examples: + [MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/cfrl_mnist.html), + [Adult income](https://docs.seldon.io/projects/alibi/en/stable/examples/cfrl_adult.html) +- Integrated Gradients ([Sundararajan et al., 2017](https://arxiv.org/abs/1703.01365)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/IntegratedGradients.html), + - Examples: + [MNIST example](https://docs.seldon.io/projects/alibi/en/stable/examples/integrated_gradients_mnist.html), + [Imagenet example](https://docs.seldon.io/projects/alibi/en/stable/examples/integrated_gradients_imagenet.html), + [IMDB example](https://docs.seldon.io/projects/alibi/en/stable/examples/integrated_gradients_imdb.html). +- Kernel Shapley Additive Explanations ([Lundberg et al., 2017](https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/KernelSHAP.html) + - Examples: + [SVM with continuous data](https://docs.seldon.io/projects/alibi/en/stable/examples/kernel_shap_wine_intro.html), + [multinomial logistic regression with continous data](https://docs.seldon.io/projects/alibi/en/stable/examples/kernel_shap_wine_lr.html), + [handling categorical variables](https://docs.seldon.io/projects/alibi/en/stable/examples/kernel_shap_adult_lr.html) +- Tree Shapley Additive Explanations ([Lundberg et al., 2020](https://www.nature.com/articles/s42256-019-0138-9)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.html) + - Examples: + [Interventional (adult income, xgboost)](https://docs.seldon.io/projects/alibi/en/stable/examples/interventional_tree_shap_adult_xgb.html), + [Path-dependent (adult income, xgboost)](https://docs.seldon.io/projects/alibi/en/stable/examples/path_dependent_tree_shap_adult_xgb.html) +- Trust Scores ([Jiang et al., 2018](https://arxiv.org/abs/1805.11783)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/TrustScores.html) + - Examples: + [MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/trustscore_mnist.html), + [Iris dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/trustscore_mnist.html) +- Linearity Measure + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/LinearityMeasure.html) + - Examples: + [Iris dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/linearity_measure_iris.html), + [fashion MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/linearity_measure_fashion_mnist.html) +- ProtoSelect + - [Documentation](https://docs.seldon.io/projects/alibi/en/latest/methods/ProtoSelect.html) + - Examples: + [Adult Census & CIFAR10](https://docs.seldon.io/projects/alibi/en/latest/examples/protoselect_adult_cifar10.html) +- Similarity explanations + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/Similarity.html) + - Examples: + [20 news groups dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/similarity_explanations_20ng.html), + [ImageNet dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/similarity_explanations_imagenet.html), + [MNIST dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/similarity_explanations_mnist.html) +## Citations +If you use alibi in your research, please consider citing it. +BibTeX entry: +``` +@article{JMLR:v22:21-0017, + author = {Janis Klaise and Arnaud Van Looveren and Giovanni Vacanti and Alexandru Coca}, + title = {Alibi Explain: Algorithms for Explaining Machine Learning Models}, + journal = {Journal of Machine Learning Research}, + year = {2021}, + volume = {22}, + number = {181}, + pages = {1-7}, + url = {http://jmlr.org/papers/v22/21-0017.html} +} +``` + +%package help +Summary: Development documents and examples for alibi +Provides: python3-alibi-doc +%description help +[Alibi](https://docs.seldon.io/projects/alibi) is an open source Python library aimed at machine learning model inspection and interpretation. +The focus of the library is to provide high-quality implementations of black-box, white-box, local and global +explanation methods for classification and regression models. +* [Documentation](https://docs.seldon.io/projects/alibi/en/stable/) +If you're interested in outlier detection, concept drift or adversarial instance detection, check out our sister project [alibi-detect](https://github.com/SeldonIO/alibi-detect). +<table> + <tr valign="top"> + <td width="50%" > + <a href="https://docs.seldon.io/projects/alibi/en/stable/examples/anchor_image_imagenet.html"> + <br> + <b>Anchor explanations for images</b> + <br> + <br> + <img src="https://github.com/SeldonIO/alibi/raw/master/doc/source/_static/anchor_image.png"> + </a> + </td> + <td width="50%"> + <a href="https://docs.seldon.io/projects/alibi/en/stable/examples/integrated_gradients_imdb.html"> + <br> + <b>Integrated Gradients for text</b> + <br> + <br> + <img src="https://github.com/SeldonIO/alibi/raw/master/doc/source/_static/ig_text.png"> + </a> + </td> + </tr> + <tr valign="top"> + <td width="50%"> + <a href="https://docs.seldon.io/projects/alibi/en/stable/methods/CFProto.html"> + <br> + <b>Counterfactual examples</b> + <br> + <br> + <img src="https://github.com/SeldonIO/alibi/raw/master/doc/source/_static/cf.png"> + </a> + </td> + <td width="50%"> + <a href="https://docs.seldon.io/projects/alibi/en/stable/methods/ALE.html"> + <br> + <b>Accumulated Local Effects</b> + <br> + <br> + <img src="https://github.com/SeldonIO/alibi/raw/master/doc/source/_static/ale.png"> + </a> + </td> + </tr> +</table> +## Table of Contents +* [Installation and Usage](#installation-and-usage) +* [Supported Methods](#supported-methods) + * [Model Explanations](#model-explanations) + * [Model Confidence](#model-confidence) + * [Prototypes](#prototypes) + * [References and Examples](#references-and-examples) +* [Citations](#citations) +## Installation and Usage +Alibi can be installed from: +- PyPI or GitHub source (with `pip`) +- Anaconda (with `conda`/`mamba`) +### With pip +- Alibi can be installed from [PyPI](https://pypi.org/project/alibi): + ```bash + pip install alibi + ``` +- Alternatively, the development version can be installed: + ```bash + pip install git+https://github.com/SeldonIO/alibi.git + ``` +- To take advantage of distributed computation of explanations, install `alibi` with `ray`: + ```bash + pip install alibi[ray] + ``` +- For SHAP support, install `alibi` as follows: + ```bash + pip install alibi[shap] + ``` +### With conda +To install from [conda-forge](https://conda-forge.org/) it is recommended to use [mamba](https://mamba.readthedocs.io/en/stable/), +which can be installed to the *base* conda enviroment with: +```bash +conda install mamba -n base -c conda-forge +``` +- For the standard Alibi install: + ```bash + mamba install -c conda-forge alibi + ``` +- For distributed computing support: + ```bash + mamba install -c conda-forge alibi ray + ``` +- For SHAP support: + ```bash + mamba install -c conda-forge alibi shap + ``` +### Usage +The alibi explanation API takes inspiration from `scikit-learn`, consisting of distinct initialize, +fit and explain steps. We will use the [AnchorTabular](https://docs.seldon.io/projects/alibi/en/stable/methods/Anchors.html) +explainer to illustrate the API: +```python +from alibi.explainers import AnchorTabular +# initialize and fit explainer by passing a prediction function and any other required arguments +explainer = AnchorTabular(predict_fn, feature_names=feature_names, category_map=category_map) +explainer.fit(X_train) +# explain an instance +explanation = explainer.explain(x) +``` +The explanation returned is an `Explanation` object with attributes `meta` and `data`. `meta` is a dictionary +containing the explainer metadata and any hyperparameters and `data` is a dictionary containing everything +related to the computed explanation. For example, for the Anchor algorithm the explanation can be accessed +via `explanation.data['anchor']` (or `explanation.anchor`). The exact details of available fields varies +from method to method so we encourage the reader to become familiar with the +[types of methods supported](https://docs.seldon.io/projects/alibi/en/stable/overview/algorithms.html). +## Supported Methods +The following tables summarize the possible use cases for each method. +### Model Explanations +| Method | Models | Explanations | Classification | Regression | Tabular | Text | Images | Categorical features | Train set required | Distributed | +|:-------------------------------------------------------------------------------------------------------------|:------------:|:---------------------:|:--------------:|:----------:|:-------:|:----:|:------:|:--------------------:|:------------------:|:-----------:| +| [ALE](https://docs.seldon.io/projects/alibi/en/stable/methods/ALE.html) | BB | global | ✔ | ✔ | ✔ | | | | | | +| [Partial Dependence](https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependence.html) | BB WB | global | ✔ | ✔ | ✔ | | | ✔ | | | +| [PD Variance](https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependenceVariance.html) | BB WB | global | ✔ | ✔ | ✔ | | | ✔ | | | +| [Permutation Importance](https://docs.seldon.io/projects/alibi/en/stable/methods/PermutationImportance.html) | BB | global | ✔ | ✔ | ✔ | | | ✔ | | | +| [Anchors](https://docs.seldon.io/projects/alibi/en/stable/methods/Anchors.html) | BB | local | ✔ | | ✔ | ✔ | ✔ | ✔ | For Tabular | | +| [CEM](https://docs.seldon.io/projects/alibi/en/stable/methods/CEM.html) | BB* TF/Keras | local | ✔ | | ✔ | | ✔ | | Optional | | +| [Counterfactuals](https://docs.seldon.io/projects/alibi/en/stable/methods/CF.html) | BB* TF/Keras | local | ✔ | | ✔ | | ✔ | | No | | +| [Prototype Counterfactuals](https://docs.seldon.io/projects/alibi/en/stable/methods/CFProto.html) | BB* TF/Keras | local | ✔ | | ✔ | | ✔ | ✔ | Optional | | +| [Counterfactuals with RL](https://docs.seldon.io/projects/alibi/en/stable/methods/CFRL.html) | BB | local | ✔ | | ✔ | | ✔ | ✔ | ✔ | | +| [Integrated Gradients](https://docs.seldon.io/projects/alibi/en/stable/methods/IntegratedGradients.html) | TF/Keras | local | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | Optional | | +| [Kernel SHAP](https://docs.seldon.io/projects/alibi/en/stable/methods/KernelSHAP.html) | BB | local <br></br>global | ✔ | ✔ | ✔ | | | ✔ | ✔ | ✔ | +| [Tree SHAP](https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.html) | WB | local <br></br>global | ✔ | ✔ | ✔ | | | ✔ | Optional | | +| [Similarity explanations](https://docs.seldon.io/projects/alibi/en/stable/methods/Similarity.html) | WB | local | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | | +### Model Confidence +These algorithms provide **instance-specific** scores measuring the model confidence for making a +particular prediction. +|Method|Models|Classification|Regression|Tabular|Text|Images|Categorical Features|Train set required| +|:---|:---|:---:|:---:|:---:|:---:|:---:|:---:|:---| +|[Trust Scores](https://docs.seldon.io/projects/alibi/en/stable/methods/TrustScores.html)|BB|✔| |✔|✔(1)|✔(2)| |Yes| +|[Linearity Measure](https://docs.seldon.io/projects/alibi/en/stable/methods/LinearityMeasure.html)|BB|✔|✔|✔| |✔| |Optional| +Key: + - **BB** - black-box (only require a prediction function) + - **BB\*** - black-box but assume model is differentiable + - **WB** - requires white-box model access. There may be limitations on models supported + - **TF/Keras** - TensorFlow models via the Keras API + - **Local** - instance specific explanation, why was this prediction made? + - **Global** - explains the model with respect to a set of instances + - **(1)** - depending on model + - **(2)** - may require dimensionality reduction +### Prototypes +These algorithms provide a **distilled** view of the dataset and help construct a 1-KNN **interpretable** classifier. +|Method|Classification|Regression|Tabular|Text|Images|Categorical Features|Train set labels| +|:-----|:-------------|:---------|:------|:---|:-----|:-------------------|:---------------| +|[ProtoSelect](https://docs.seldon.io/projects/alibi/en/latest/methods/ProtoSelect.html)|✔| |✔|✔|✔|✔| Optional | +## References and Examples +- Accumulated Local Effects (ALE, [Apley and Zhu, 2016](https://arxiv.org/abs/1612.08468)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/ALE.html) + - Examples: + [California housing dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/ale_regression_california.html), + [Iris dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/ale_classification.html) +- Partial Dependence ([J.H. Friedman, 2001](https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boostingmachine/10.1214/aos/1013203451.full)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependence.html) + - Examples: + [Bike rental](https://docs.seldon.io/projects/alibi/en/stable/examples/pdp_regression_bike.html) +- Partial Dependence Variance([Greenwell et al., 2018](https://arxiv.org/abs/1805.04755)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependenceVariance.html) + - Examples: + [Friedman’s regression problem](https://docs.seldon.io/projects/alibi/en/stable/examples/pd_variance_regression_friedman.html) +- Permutation Importance([Breiman, 2001](https://link.springer.com/article/10.1023/A:1010933404324); [Fisher et al., 2018](https://arxiv.org/abs/1801.01489)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/PermutationImportance.html) + - Examples: + [Who's Going to Leave Next?](https://docs.seldon.io/projects/alibi/en/stable/examples/permutation_importance_classification_leave.html) +- Anchor explanations ([Ribeiro et al., 2018](https://homes.cs.washington.edu/~marcotcr/aaai18.pdf)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/Anchors.html) + - Examples: + [income prediction](https://docs.seldon.io/projects/alibi/en/stable/examples/anchor_tabular_adult.html), + [Iris dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/anchor_tabular_iris.html), + [movie sentiment classification](https://docs.seldon.io/projects/alibi/en/stable/examples/anchor_text_movie.html), + [ImageNet](https://docs.seldon.io/projects/alibi/en/stable/examples/anchor_image_imagenet.html), + [fashion MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/anchor_image_fashion_mnist.html) +- Contrastive Explanation Method (CEM, [Dhurandhar et al., 2018](https://papers.nips.cc/paper/7340-explanations-based-on-the-missing-towards-contrastive-explanations-with-pertinent-negatives)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/CEM.html) + - Examples: [MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/cem_mnist.html), + [Iris dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/cem_iris.html) +- Counterfactual Explanations (extension of + [Wachter et al., 2017](https://arxiv.org/abs/1711.00399)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/CF.html) + - Examples: + [MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/cf_mnist.html) +- Counterfactual Explanations Guided by Prototypes ([Van Looveren and Klaise, 2019](https://arxiv.org/abs/1907.02584)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/CFProto.html) + - Examples: + [MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/cfproto_mnist.html), + [California housing dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/cfproto_housing.html), + [Adult income (one-hot)](https://docs.seldon.io/projects/alibi/en/stable/examples/cfproto_cat_adult_ohe.html), + [Adult income (ordinal)](https://docs.seldon.io/projects/alibi/en/stable/examples/cfproto_cat_adult_ord.html) +- Model-agnostic Counterfactual Explanations via RL([Samoilescu et al., 2021](https://arxiv.org/abs/2106.02597)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/CFRL.html) + - Examples: + [MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/cfrl_mnist.html), + [Adult income](https://docs.seldon.io/projects/alibi/en/stable/examples/cfrl_adult.html) +- Integrated Gradients ([Sundararajan et al., 2017](https://arxiv.org/abs/1703.01365)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/IntegratedGradients.html), + - Examples: + [MNIST example](https://docs.seldon.io/projects/alibi/en/stable/examples/integrated_gradients_mnist.html), + [Imagenet example](https://docs.seldon.io/projects/alibi/en/stable/examples/integrated_gradients_imagenet.html), + [IMDB example](https://docs.seldon.io/projects/alibi/en/stable/examples/integrated_gradients_imdb.html). +- Kernel Shapley Additive Explanations ([Lundberg et al., 2017](https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/KernelSHAP.html) + - Examples: + [SVM with continuous data](https://docs.seldon.io/projects/alibi/en/stable/examples/kernel_shap_wine_intro.html), + [multinomial logistic regression with continous data](https://docs.seldon.io/projects/alibi/en/stable/examples/kernel_shap_wine_lr.html), + [handling categorical variables](https://docs.seldon.io/projects/alibi/en/stable/examples/kernel_shap_adult_lr.html) +- Tree Shapley Additive Explanations ([Lundberg et al., 2020](https://www.nature.com/articles/s42256-019-0138-9)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.html) + - Examples: + [Interventional (adult income, xgboost)](https://docs.seldon.io/projects/alibi/en/stable/examples/interventional_tree_shap_adult_xgb.html), + [Path-dependent (adult income, xgboost)](https://docs.seldon.io/projects/alibi/en/stable/examples/path_dependent_tree_shap_adult_xgb.html) +- Trust Scores ([Jiang et al., 2018](https://arxiv.org/abs/1805.11783)) + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/TrustScores.html) + - Examples: + [MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/trustscore_mnist.html), + [Iris dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/trustscore_mnist.html) +- Linearity Measure + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/LinearityMeasure.html) + - Examples: + [Iris dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/linearity_measure_iris.html), + [fashion MNIST](https://docs.seldon.io/projects/alibi/en/stable/examples/linearity_measure_fashion_mnist.html) +- ProtoSelect + - [Documentation](https://docs.seldon.io/projects/alibi/en/latest/methods/ProtoSelect.html) + - Examples: + [Adult Census & CIFAR10](https://docs.seldon.io/projects/alibi/en/latest/examples/protoselect_adult_cifar10.html) +- Similarity explanations + - [Documentation](https://docs.seldon.io/projects/alibi/en/stable/methods/Similarity.html) + - Examples: + [20 news groups dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/similarity_explanations_20ng.html), + [ImageNet dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/similarity_explanations_imagenet.html), + [MNIST dataset](https://docs.seldon.io/projects/alibi/en/stable/examples/similarity_explanations_mnist.html) +## Citations +If you use alibi in your research, please consider citing it. +BibTeX entry: +``` +@article{JMLR:v22:21-0017, + author = {Janis Klaise and Arnaud Van Looveren and Giovanni Vacanti and Alexandru Coca}, + title = {Alibi Explain: Algorithms for Explaining Machine Learning Models}, + journal = {Journal of Machine Learning Research}, + year = {2021}, + volume = {22}, + number = {181}, + pages = {1-7}, + url = {http://jmlr.org/papers/v22/21-0017.html} +} +``` + +%prep +%autosetup -n alibi-0.9.1 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-alibi -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.9.1-1 +- Package Spec generated @@ -0,0 +1 @@ +e85efefef0c63e0765887fccab9948b6 alibi-0.9.1.tar.gz |
