1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
|
%global _empty_manifest_terminate_build 0
Name: python-alphanet
Version: 0.0.20
Release: 1
Summary: A recurrent neural network for predicting stock market performance
License: MIT License
URL: https://github.com/Congyuwang/AlphaNetV3
Source0: https://mirrors.aliyun.com/pypi/web/packages/2e/7d/4a79e0b9059f42d6370d2aa12a4287fbdeed1b11f7cc0e172a4a30606812/alphanet-0.0.20.tar.gz
BuildArch: noarch
%description
# AlphaNet

[](https://circleci.com/gh/Congyuwang/AlphaNetV3)

## A Recurrent Neural Network For Predicting Stock Prices
### AlphaNetV2
Below is the structure of AlphaNetV2
```
input: (batch_size, history time steps, features)
stride = 5
input -> expand features -> BN -> LSTM -> BN -> Dense(linear)
```
### AlphaNetV3
Below is the structure of AlphaNetV3
```
input: (batch_size, history time steps, features)
stride = 5
+-> expand features -> BN -> GRU -> BN -+
input --| stride = 10 |- concat -> Dense(linear)
+-> expand features -> BN -> GRU -> BN -+
```
## Installation
Either clone this repository or just use pypi: ``pip install alphanet``.
The pypi project is here: [alphanet](https://pypi.org/project/alphanet/).
## Example
### Step 0: import alphanet
```python
from alphanet import AlphaNetV3, load_model
from alphanet.data import TrainValData, TimeSeriesData
from alphanet.metrics import UpDownAccuracy
```
### Step 1: build data
```python
# read data
df = pd.read_csv("some_data.csv")
# compute label (future return)
df_future_return = here_you_compute_it_by_your_self
df = df_future_return.merge(df,
how="inner",
left_on=["date", "security_code"],
right_on=["date", "security_code"])
# create an empty list
stock_data_list = []
# put each stock into the list using TimeSeriesData() class
security_codes = df["security_code"].unique()
for code in security_codes:
table_part = df.loc[df["security_code"] == code, :]
stock_data_list.append(TimeSeriesData(dates=table_part["date"].values, # date column
data=table_part.iloc[:, 3:].values, # data columns
labels=table_part["future_10_cum_return"].values)) # label column
# put stock list into TrainValData() class, specify dataset lengths
train_val_data = TrainValData(time_series_list=stock_data_list,
train_length=1200, # 1200 trading days for training
validate_length=150, # 150 trading days for validation
history_length=30, # each input contains 30 days of history
sample_step=2, # jump to days forward for each sampling
train_val_gap=10 # leave a 10-day gap between training and validation
```
### Step 2: get datasets from desired period
```python
# get one training period that start from 20110131
train, val, dates_info = train_val_data.get(20110131, order="by_date")
print(dates_info)
```
### Step 3: compile the model and start training
```python
# get an AlphaNetV3 instance
model = AlphaNetV3(l2=0.001, dropout=0.0)
# you may use UpDownAccuracy() here to evaluate performance
model.compile(metrics=[tf.keras.metrics.RootMeanSquaredError(),
UpDownAccuracy()]
# train
model.fit(train.batch(500).cache(),
validation_data=val.batch(500).cache(),
epochs=100)
```
### Step 4: save and load
#### saving
```python
# save model by save method
model.save("path_to_your_model")
# or just save weights
model.save_weights("path_to_your_weights")
```
#### loading
```python
# load entire model using load_model() from alphanet module
model = load_model("path_to_your_model")
# only load weights by first creating a model instance
model = AlphaNetV3(l2=0.001, dropout=0.0)
model.load_weights("path_to_your_weights")
```
Note: only `alphanet.load_model(filename)` recognizes custom `UpDownAccuracy`.
If you do not use `UpDownAccuracy`,
you can _also_ use `tf.keras.models.load_model(filename)`.
## Documentation
For detailed documentation, go to
[alphanet documentation](https://github.com/Congyuwang/AlphaNetV3/tree/master/docs).
For implementation details, go to
[alphanet source folder](https://github.com/Congyuwang/AlphaNetV3/tree/master/src).
### One Little Caveat
The model expands features quadratically.
So, if you have 5 features, it will be expanded to more than 50 features (for AlphaNetV3),
and if you have 10 features, it will be expanded to more than 200 features.
Therefore, do not put too many features inside.
### One More Note
``alphanet.data``module is completely independent from ``alphanet`` module,
and can be a useful tool for training any timeseries neural network.
%package -n python3-alphanet
Summary: A recurrent neural network for predicting stock market performance
Provides: python-alphanet
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-alphanet
# AlphaNet

[](https://circleci.com/gh/Congyuwang/AlphaNetV3)

## A Recurrent Neural Network For Predicting Stock Prices
### AlphaNetV2
Below is the structure of AlphaNetV2
```
input: (batch_size, history time steps, features)
stride = 5
input -> expand features -> BN -> LSTM -> BN -> Dense(linear)
```
### AlphaNetV3
Below is the structure of AlphaNetV3
```
input: (batch_size, history time steps, features)
stride = 5
+-> expand features -> BN -> GRU -> BN -+
input --| stride = 10 |- concat -> Dense(linear)
+-> expand features -> BN -> GRU -> BN -+
```
## Installation
Either clone this repository or just use pypi: ``pip install alphanet``.
The pypi project is here: [alphanet](https://pypi.org/project/alphanet/).
## Example
### Step 0: import alphanet
```python
from alphanet import AlphaNetV3, load_model
from alphanet.data import TrainValData, TimeSeriesData
from alphanet.metrics import UpDownAccuracy
```
### Step 1: build data
```python
# read data
df = pd.read_csv("some_data.csv")
# compute label (future return)
df_future_return = here_you_compute_it_by_your_self
df = df_future_return.merge(df,
how="inner",
left_on=["date", "security_code"],
right_on=["date", "security_code"])
# create an empty list
stock_data_list = []
# put each stock into the list using TimeSeriesData() class
security_codes = df["security_code"].unique()
for code in security_codes:
table_part = df.loc[df["security_code"] == code, :]
stock_data_list.append(TimeSeriesData(dates=table_part["date"].values, # date column
data=table_part.iloc[:, 3:].values, # data columns
labels=table_part["future_10_cum_return"].values)) # label column
# put stock list into TrainValData() class, specify dataset lengths
train_val_data = TrainValData(time_series_list=stock_data_list,
train_length=1200, # 1200 trading days for training
validate_length=150, # 150 trading days for validation
history_length=30, # each input contains 30 days of history
sample_step=2, # jump to days forward for each sampling
train_val_gap=10 # leave a 10-day gap between training and validation
```
### Step 2: get datasets from desired period
```python
# get one training period that start from 20110131
train, val, dates_info = train_val_data.get(20110131, order="by_date")
print(dates_info)
```
### Step 3: compile the model and start training
```python
# get an AlphaNetV3 instance
model = AlphaNetV3(l2=0.001, dropout=0.0)
# you may use UpDownAccuracy() here to evaluate performance
model.compile(metrics=[tf.keras.metrics.RootMeanSquaredError(),
UpDownAccuracy()]
# train
model.fit(train.batch(500).cache(),
validation_data=val.batch(500).cache(),
epochs=100)
```
### Step 4: save and load
#### saving
```python
# save model by save method
model.save("path_to_your_model")
# or just save weights
model.save_weights("path_to_your_weights")
```
#### loading
```python
# load entire model using load_model() from alphanet module
model = load_model("path_to_your_model")
# only load weights by first creating a model instance
model = AlphaNetV3(l2=0.001, dropout=0.0)
model.load_weights("path_to_your_weights")
```
Note: only `alphanet.load_model(filename)` recognizes custom `UpDownAccuracy`.
If you do not use `UpDownAccuracy`,
you can _also_ use `tf.keras.models.load_model(filename)`.
## Documentation
For detailed documentation, go to
[alphanet documentation](https://github.com/Congyuwang/AlphaNetV3/tree/master/docs).
For implementation details, go to
[alphanet source folder](https://github.com/Congyuwang/AlphaNetV3/tree/master/src).
### One Little Caveat
The model expands features quadratically.
So, if you have 5 features, it will be expanded to more than 50 features (for AlphaNetV3),
and if you have 10 features, it will be expanded to more than 200 features.
Therefore, do not put too many features inside.
### One More Note
``alphanet.data``module is completely independent from ``alphanet`` module,
and can be a useful tool for training any timeseries neural network.
%package help
Summary: Development documents and examples for alphanet
Provides: python3-alphanet-doc
%description help
# AlphaNet

[](https://circleci.com/gh/Congyuwang/AlphaNetV3)

## A Recurrent Neural Network For Predicting Stock Prices
### AlphaNetV2
Below is the structure of AlphaNetV2
```
input: (batch_size, history time steps, features)
stride = 5
input -> expand features -> BN -> LSTM -> BN -> Dense(linear)
```
### AlphaNetV3
Below is the structure of AlphaNetV3
```
input: (batch_size, history time steps, features)
stride = 5
+-> expand features -> BN -> GRU -> BN -+
input --| stride = 10 |- concat -> Dense(linear)
+-> expand features -> BN -> GRU -> BN -+
```
## Installation
Either clone this repository or just use pypi: ``pip install alphanet``.
The pypi project is here: [alphanet](https://pypi.org/project/alphanet/).
## Example
### Step 0: import alphanet
```python
from alphanet import AlphaNetV3, load_model
from alphanet.data import TrainValData, TimeSeriesData
from alphanet.metrics import UpDownAccuracy
```
### Step 1: build data
```python
# read data
df = pd.read_csv("some_data.csv")
# compute label (future return)
df_future_return = here_you_compute_it_by_your_self
df = df_future_return.merge(df,
how="inner",
left_on=["date", "security_code"],
right_on=["date", "security_code"])
# create an empty list
stock_data_list = []
# put each stock into the list using TimeSeriesData() class
security_codes = df["security_code"].unique()
for code in security_codes:
table_part = df.loc[df["security_code"] == code, :]
stock_data_list.append(TimeSeriesData(dates=table_part["date"].values, # date column
data=table_part.iloc[:, 3:].values, # data columns
labels=table_part["future_10_cum_return"].values)) # label column
# put stock list into TrainValData() class, specify dataset lengths
train_val_data = TrainValData(time_series_list=stock_data_list,
train_length=1200, # 1200 trading days for training
validate_length=150, # 150 trading days for validation
history_length=30, # each input contains 30 days of history
sample_step=2, # jump to days forward for each sampling
train_val_gap=10 # leave a 10-day gap between training and validation
```
### Step 2: get datasets from desired period
```python
# get one training period that start from 20110131
train, val, dates_info = train_val_data.get(20110131, order="by_date")
print(dates_info)
```
### Step 3: compile the model and start training
```python
# get an AlphaNetV3 instance
model = AlphaNetV3(l2=0.001, dropout=0.0)
# you may use UpDownAccuracy() here to evaluate performance
model.compile(metrics=[tf.keras.metrics.RootMeanSquaredError(),
UpDownAccuracy()]
# train
model.fit(train.batch(500).cache(),
validation_data=val.batch(500).cache(),
epochs=100)
```
### Step 4: save and load
#### saving
```python
# save model by save method
model.save("path_to_your_model")
# or just save weights
model.save_weights("path_to_your_weights")
```
#### loading
```python
# load entire model using load_model() from alphanet module
model = load_model("path_to_your_model")
# only load weights by first creating a model instance
model = AlphaNetV3(l2=0.001, dropout=0.0)
model.load_weights("path_to_your_weights")
```
Note: only `alphanet.load_model(filename)` recognizes custom `UpDownAccuracy`.
If you do not use `UpDownAccuracy`,
you can _also_ use `tf.keras.models.load_model(filename)`.
## Documentation
For detailed documentation, go to
[alphanet documentation](https://github.com/Congyuwang/AlphaNetV3/tree/master/docs).
For implementation details, go to
[alphanet source folder](https://github.com/Congyuwang/AlphaNetV3/tree/master/src).
### One Little Caveat
The model expands features quadratically.
So, if you have 5 features, it will be expanded to more than 50 features (for AlphaNetV3),
and if you have 10 features, it will be expanded to more than 200 features.
Therefore, do not put too many features inside.
### One More Note
``alphanet.data``module is completely independent from ``alphanet`` module,
and can be a useful tool for training any timeseries neural network.
%prep
%autosetup -n alphanet-0.0.20
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-alphanet -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.20-1
- Package Spec generated
|