summaryrefslogtreecommitdiff
path: root/python-altair.spec
blob: c5f94517b726848933a534fdaa596555c53c66d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
%global _empty_manifest_terminate_build 0
Name:		python-altair
Version:	4.2.2
Release:	1
Summary:	Altair: A declarative statistical visualization library for Python.
License:	BSD 3-clause
URL:		http://altair-viz.github.io
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/ec/bf/781b607da4c1a2a7211cd570bd7e22e0accd4deaf1074c32ac7344a09339/altair-4.2.2.tar.gz
BuildArch:	noarch

Requires:	python3-entrypoints
Requires:	python3-jinja2
Requires:	python3-jsonschema
Requires:	python3-numpy
Requires:	python3-pandas
Requires:	python3-toolz
Requires:	python3-black
Requires:	python3-docutils
Requires:	python3-ipython
Requires:	python3-flake8
Requires:	python3-pytest
Requires:	python3-sphinx
Requires:	python3-mistune
Requires:	python3-m2r
Requires:	python3-vega-datasets
Requires:	python3-recommonmark

%description
# Altair <a href="https://altair-viz.github.io/"><img align="right" src="https://altair-viz.github.io/_static/altair-logo-light.png" height="50"></img></a>

[![build status](https://img.shields.io/travis/altair-viz/altair/master.svg?style=flat)](https://travis-ci.org/altair-viz/altair)
[![github actions](https://github.com/altair-viz/altair/workflows/build/badge.svg)](https://github.com/altair-viz/altair/actions?query=workflow%3Abuild)
[![code style black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![JOSS Paper](https://joss.theoj.org/papers/10.21105/joss.01057/status.svg)](https://joss.theoj.org/papers/10.21105/joss.01057)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/altair)](https://pypi.org/project/altair)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/altair-viz/altair_notebooks/master?urlpath=lab/tree/notebooks/Index.ipynb)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/altair-viz/altair_notebooks/blob/master/notebooks/Index.ipynb)

[https://altair-viz.github.io](https://altair-viz.github.io)

**Altair** is a declarative statistical visualization library for Python. With Altair, you can spend more time understanding your data and its meaning. Altair's
API is simple, friendly and consistent and built on top of the powerful
[Vega-Lite](https://github.com/vega/vega-lite) JSON specification. This elegant
simplicity produces beautiful and effective visualizations with a minimal amount of code. *Altair is developed by [Jake Vanderplas](https://github.com/jakevdp) and [Brian
Granger](https://github.com/ellisonbg) in close collaboration with the [UW
Interactive Data Lab](https://idl.cs.washington.edu/).*

## Altair Documentation

See [Altair's Documentation Site](https://altair-viz.github.io),
as well as Altair's [Tutorial Notebooks](https://github.com/altair-viz/altair_notebooks).

## Example

Here is an example using Altair to quickly visualize and display a dataset with the native Vega-Lite renderer in the JupyterLab:

```python
import altair as alt

# load a simple dataset as a pandas DataFrame
from vega_datasets import data
cars = data.cars()

alt.Chart(cars).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
)
```

![Altair Visualization](https://raw.githubusercontent.com/altair-viz/altair/master/images/cars.png)

One of the unique features of Altair, inherited from Vega-Lite, is a declarative grammar of not just visualization, but _interaction_. 
With a few modifications to the example above we can create a linked histogram that is filtered based on a selection of the scatter plot.

```python 
import altair as alt
from vega_datasets import data

source = data.cars()

brush = alt.selection(type='interval')

points = alt.Chart(source).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color=alt.condition(brush, 'Origin', alt.value('lightgray'))
).add_selection(
    brush
)

bars = alt.Chart(source).mark_bar().encode(
    y='Origin',
    color='Origin',
    x='count(Origin)'
).transform_filter(
    brush
)

points & bars
```

![Altair Visualization Gif](https://raw.githubusercontent.com/altair-viz/altair/master/images/cars_scatter_bar.gif)


## Getting your Questions Answered

If you have a question that is not addressed in the documentation, there are several ways to ask:

- open a [Github Issue](https://github.com/altair-viz/altair/issues)
- post a [StackOverflow Question](https://stackoverflow.com/questions/tagged/altair) (be sure to use the `altair` tag)
- ask on the [Altair Google Group](https://groups.google.com/forum/#!forum/altair-viz)

We'll do our best to get your question answered

## A Python API for statistical visualizations

Altair provides a Python API for building statistical visualizations in a declarative
manner. By statistical visualization we mean:

* The **data source** is a `DataFrame` that consists of columns of different data types (quantitative, ordinal, nominal and date/time).
* The `DataFrame` is in a [tidy format](https://vita.had.co.nz/papers/tidy-data.pdf)
  where the rows correspond to samples and the columns correspond to the observed variables.
* The data is mapped to the **visual properties** (position, color, size, shape,
  faceting, etc.) using the group-by data transformation.

The Altair API contains no actual visualization rendering code but instead
emits JSON data structures following the
[Vega-Lite](https://github.com/vega/vega-lite) specification. The resulting
Vega-Lite JSON data can be rendered in the following user-interfaces:

* [Jupyter Notebook](https://github.com/jupyter/notebook) (by installing [ipyvega](https://github.com/vega/ipyvega)).
* [JupyterLab](https://github.com/jupyterlab/jupyterlab) (no additional dependencies needed).
* [nteract](https://github.com/nteract/nteract) (no additional dependencies needed).

## Features

* Carefully-designed, declarative Python API based on
  [traitlets](https://github.com/ipython/traitlets).
* Auto-generated internal Python API that guarantees visualizations are type-checked and
  in full conformance with the [Vega-Lite](https://github.com/vega/vega-lite)
  specification.
* Auto-generate Altair Python code from a Vega-Lite JSON spec.
* Display visualizations in the live Jupyter Notebook, JupyterLab, nteract, on GitHub and
  [nbviewer](https://nbviewer.jupyter.org/).
* Export visualizations to PNG/SVG images, stand-alone HTML pages and the
[Online Vega-Lite Editor](https://vega.github.io/editor/#/).
* Serialize visualizations as JSON files.
* Explore Altair with dozens of examples in the [Example Gallery](https://altair-viz.github.io/gallery/index.html)

## Installation

To use Altair for visualization, you need to install two sets of tools

1. The core Altair Package and its dependencies

2. The renderer for the frontend you wish to use (i.e. `Jupyter Notebook`,
   `JupyterLab`, or `nteract`)

Altair can be installed with either ``pip`` or with ``conda``.
For full installation instructions, please see
https://altair-viz.github.io/getting_started/installation.html

## Example and tutorial notebooks

We maintain a separate Github repository of Jupyter Notebooks that contain an
interactive tutorial and examples:

https://github.com/altair-viz/altair_notebooks

To launch a live notebook server with those notebook using [binder](https://mybinder.org/) or
[Colab](https://colab.research.google.com), click on one of the following badges:

[![Binder](https://beta.mybinder.org/badge.svg)](https://beta.mybinder.org/v2/gh/altair-viz/altair_notebooks/master)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/altair-viz/altair_notebooks/blob/master/notebooks/Index.ipynb)

## Project philosophy

Many excellent plotting libraries exist in Python, including the main ones:

* [Matplotlib](https://matplotlib.org/)
* [Bokeh](https://bokeh.pydata.org/en/latest/)
* [Seaborn](https://seaborn.pydata.org/)
* [Lightning](https://github.com/lightning-viz/lightning)
* [Plotly](https://plot.ly/)
* [Pandas built-in plotting](https://pandas.pydata.org/pandas-docs/stable/visualization.html)
* [HoloViews](https://holoviews.org)
* [VisPy](https://vispy.org/)
* [pygg](https://www.github.com/sirrice/pygg)

Each library does a particular set of things well.

### User challenges

However, such a proliferation of options creates great difficulty for users
as they have to wade through all of these APIs to find which of them is the
best for the task at hand. None of these libraries are optimized for
high-level statistical visualization, so users have to assemble their own
using a mishmash of APIs. For individuals just learning data science, this
forces them to focus on learning APIs rather than exploring their data.

Another challenge is current plotting APIs require the user to write code,
even for incidental details of a visualization. This results in an unfortunate
and unnecessary cognitive burden as the visualization type (histogram,
scatterplot, etc.) can often be inferred using basic information such as the
columns of interest and the data types of those columns.

For example, if you are interested in the visualization of two numerical
columns, a scatterplot is almost certainly a good starting point. If you add
a categorical column to that, you probably want to encode that column using
colors or facets. If inferring the visualization proves difficult at times, a
simple user interface can construct a visualization without any coding.
[Tableau](https://www.tableau.com/) and the [Interactive Data
Lab's](https://idl.cs.washington.edu/)
[Polestar](https://github.com/vega/polestar) and
[Voyager](https://github.com/vega/voyager) are excellent examples of such UIs.

### Design approach and solution

We believe that these challenges can be addressed without the creation of yet
another visualization library that has a programmatic API and built-in
rendering. Altair's approach to building visualizations uses a layered design
that leverages the full capabilities of existing visualization libraries:

1. Create a constrained, simple Python API (Altair) that is purely declarative
2. Use the API (Altair) to emit JSON output that follows the Vega-Lite spec
3. Render that spec using existing visualization libraries

This approach enables users to perform exploratory visualizations with a much
simpler API initially, pick an appropriate renderer for their usage case, and
then leverage the full capabilities of that renderer for more advanced plot
customization.

We realize that a declarative API will necessarily be limited compared to the
full programmatic APIs of Matplotlib, Bokeh, etc. That is a deliberate design
choice we feel is needed to simplify the user experience of exploratory
visualization.

## Development install

Altair requires the following dependencies:

* [pandas](https://pandas.pydata.org/)
* [traitlets](https://github.com/ipython/traitlets)
* [IPython](https://github.com/ipython/ipython)

If you have cloned the repository, run the following command from the root of the repository:

```
pip install -e .[dev]
```

If you do not wish to clone the repository, you can install using:

```
pip install git+https://github.com/altair-viz/altair
```

## Testing

To run the test suite you must have [py.test](https://pytest.org/latest/) installed.
To run the tests, use

```
py.test --pyargs altair
```
(you can omit the `--pyargs` flag if you are running the tests from a source checkout).

## Feedback and Contribution

See [`CONTRIBUTING.md`](https://github.com/altair-viz/altair/blob/master/CONTRIBUTING.md)

## Citing Altair

[![JOSS Paper](https://joss.theoj.org/papers/10.21105/joss.01057/status.svg)](https://joss.theoj.org/papers/10.21105/joss.01057)

If you use Altair in academic work, please consider citing https://joss.theoj.org/papers/10.21105/joss.01057 as

```bib
@article{VanderPlas2018,
    doi = {10.21105/joss.01057},
    url = {https://doi.org/10.21105/joss.01057},
    year = {2018},
    publisher = {The Open Journal},
    volume = {3},
    number = {32},
    pages = {1057},
    author = {Jacob VanderPlas and Brian Granger and Jeffrey Heer and Dominik Moritz and Kanit Wongsuphasawat and Arvind Satyanarayan and Eitan Lees and Ilia Timofeev and Ben Welsh and Scott Sievert},
    title = {Altair: Interactive Statistical Visualizations for Python},
    journal = {Journal of Open Source Software}
}
```
Please additionally consider citing the [vega-lite](https://vega.github.io/vega-lite/) project, which Altair is based on: https://dl.acm.org/doi/10.1109/TVCG.2016.2599030
```bib
@article{Satyanarayan2017,
    author={Satyanarayan, Arvind and Moritz, Dominik and Wongsuphasawat, Kanit and Heer, Jeffrey},
    title={Vega-Lite: A Grammar of Interactive Graphics},
    journal={IEEE transactions on visualization and computer graphics},
    year={2017},
    volume={23},
    number={1},
    pages={341-350},
    publisher={IEEE}
} 
```

## Whence Altair?

Altair is the [brightest star](https://en.wikipedia.org/wiki/Altair) in the constellation Aquila, and along with Deneb and Vega forms the northern-hemisphere asterism known as the [Summer Triangle](https://en.wikipedia.org/wiki/Summer_Triangle).


%package -n python3-altair
Summary:	Altair: A declarative statistical visualization library for Python.
Provides:	python-altair
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-altair
# Altair <a href="https://altair-viz.github.io/"><img align="right" src="https://altair-viz.github.io/_static/altair-logo-light.png" height="50"></img></a>

[![build status](https://img.shields.io/travis/altair-viz/altair/master.svg?style=flat)](https://travis-ci.org/altair-viz/altair)
[![github actions](https://github.com/altair-viz/altair/workflows/build/badge.svg)](https://github.com/altair-viz/altair/actions?query=workflow%3Abuild)
[![code style black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![JOSS Paper](https://joss.theoj.org/papers/10.21105/joss.01057/status.svg)](https://joss.theoj.org/papers/10.21105/joss.01057)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/altair)](https://pypi.org/project/altair)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/altair-viz/altair_notebooks/master?urlpath=lab/tree/notebooks/Index.ipynb)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/altair-viz/altair_notebooks/blob/master/notebooks/Index.ipynb)

[https://altair-viz.github.io](https://altair-viz.github.io)

**Altair** is a declarative statistical visualization library for Python. With Altair, you can spend more time understanding your data and its meaning. Altair's
API is simple, friendly and consistent and built on top of the powerful
[Vega-Lite](https://github.com/vega/vega-lite) JSON specification. This elegant
simplicity produces beautiful and effective visualizations with a minimal amount of code. *Altair is developed by [Jake Vanderplas](https://github.com/jakevdp) and [Brian
Granger](https://github.com/ellisonbg) in close collaboration with the [UW
Interactive Data Lab](https://idl.cs.washington.edu/).*

## Altair Documentation

See [Altair's Documentation Site](https://altair-viz.github.io),
as well as Altair's [Tutorial Notebooks](https://github.com/altair-viz/altair_notebooks).

## Example

Here is an example using Altair to quickly visualize and display a dataset with the native Vega-Lite renderer in the JupyterLab:

```python
import altair as alt

# load a simple dataset as a pandas DataFrame
from vega_datasets import data
cars = data.cars()

alt.Chart(cars).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
)
```

![Altair Visualization](https://raw.githubusercontent.com/altair-viz/altair/master/images/cars.png)

One of the unique features of Altair, inherited from Vega-Lite, is a declarative grammar of not just visualization, but _interaction_. 
With a few modifications to the example above we can create a linked histogram that is filtered based on a selection of the scatter plot.

```python 
import altair as alt
from vega_datasets import data

source = data.cars()

brush = alt.selection(type='interval')

points = alt.Chart(source).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color=alt.condition(brush, 'Origin', alt.value('lightgray'))
).add_selection(
    brush
)

bars = alt.Chart(source).mark_bar().encode(
    y='Origin',
    color='Origin',
    x='count(Origin)'
).transform_filter(
    brush
)

points & bars
```

![Altair Visualization Gif](https://raw.githubusercontent.com/altair-viz/altair/master/images/cars_scatter_bar.gif)


## Getting your Questions Answered

If you have a question that is not addressed in the documentation, there are several ways to ask:

- open a [Github Issue](https://github.com/altair-viz/altair/issues)
- post a [StackOverflow Question](https://stackoverflow.com/questions/tagged/altair) (be sure to use the `altair` tag)
- ask on the [Altair Google Group](https://groups.google.com/forum/#!forum/altair-viz)

We'll do our best to get your question answered

## A Python API for statistical visualizations

Altair provides a Python API for building statistical visualizations in a declarative
manner. By statistical visualization we mean:

* The **data source** is a `DataFrame` that consists of columns of different data types (quantitative, ordinal, nominal and date/time).
* The `DataFrame` is in a [tidy format](https://vita.had.co.nz/papers/tidy-data.pdf)
  where the rows correspond to samples and the columns correspond to the observed variables.
* The data is mapped to the **visual properties** (position, color, size, shape,
  faceting, etc.) using the group-by data transformation.

The Altair API contains no actual visualization rendering code but instead
emits JSON data structures following the
[Vega-Lite](https://github.com/vega/vega-lite) specification. The resulting
Vega-Lite JSON data can be rendered in the following user-interfaces:

* [Jupyter Notebook](https://github.com/jupyter/notebook) (by installing [ipyvega](https://github.com/vega/ipyvega)).
* [JupyterLab](https://github.com/jupyterlab/jupyterlab) (no additional dependencies needed).
* [nteract](https://github.com/nteract/nteract) (no additional dependencies needed).

## Features

* Carefully-designed, declarative Python API based on
  [traitlets](https://github.com/ipython/traitlets).
* Auto-generated internal Python API that guarantees visualizations are type-checked and
  in full conformance with the [Vega-Lite](https://github.com/vega/vega-lite)
  specification.
* Auto-generate Altair Python code from a Vega-Lite JSON spec.
* Display visualizations in the live Jupyter Notebook, JupyterLab, nteract, on GitHub and
  [nbviewer](https://nbviewer.jupyter.org/).
* Export visualizations to PNG/SVG images, stand-alone HTML pages and the
[Online Vega-Lite Editor](https://vega.github.io/editor/#/).
* Serialize visualizations as JSON files.
* Explore Altair with dozens of examples in the [Example Gallery](https://altair-viz.github.io/gallery/index.html)

## Installation

To use Altair for visualization, you need to install two sets of tools

1. The core Altair Package and its dependencies

2. The renderer for the frontend you wish to use (i.e. `Jupyter Notebook`,
   `JupyterLab`, or `nteract`)

Altair can be installed with either ``pip`` or with ``conda``.
For full installation instructions, please see
https://altair-viz.github.io/getting_started/installation.html

## Example and tutorial notebooks

We maintain a separate Github repository of Jupyter Notebooks that contain an
interactive tutorial and examples:

https://github.com/altair-viz/altair_notebooks

To launch a live notebook server with those notebook using [binder](https://mybinder.org/) or
[Colab](https://colab.research.google.com), click on one of the following badges:

[![Binder](https://beta.mybinder.org/badge.svg)](https://beta.mybinder.org/v2/gh/altair-viz/altair_notebooks/master)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/altair-viz/altair_notebooks/blob/master/notebooks/Index.ipynb)

## Project philosophy

Many excellent plotting libraries exist in Python, including the main ones:

* [Matplotlib](https://matplotlib.org/)
* [Bokeh](https://bokeh.pydata.org/en/latest/)
* [Seaborn](https://seaborn.pydata.org/)
* [Lightning](https://github.com/lightning-viz/lightning)
* [Plotly](https://plot.ly/)
* [Pandas built-in plotting](https://pandas.pydata.org/pandas-docs/stable/visualization.html)
* [HoloViews](https://holoviews.org)
* [VisPy](https://vispy.org/)
* [pygg](https://www.github.com/sirrice/pygg)

Each library does a particular set of things well.

### User challenges

However, such a proliferation of options creates great difficulty for users
as they have to wade through all of these APIs to find which of them is the
best for the task at hand. None of these libraries are optimized for
high-level statistical visualization, so users have to assemble their own
using a mishmash of APIs. For individuals just learning data science, this
forces them to focus on learning APIs rather than exploring their data.

Another challenge is current plotting APIs require the user to write code,
even for incidental details of a visualization. This results in an unfortunate
and unnecessary cognitive burden as the visualization type (histogram,
scatterplot, etc.) can often be inferred using basic information such as the
columns of interest and the data types of those columns.

For example, if you are interested in the visualization of two numerical
columns, a scatterplot is almost certainly a good starting point. If you add
a categorical column to that, you probably want to encode that column using
colors or facets. If inferring the visualization proves difficult at times, a
simple user interface can construct a visualization without any coding.
[Tableau](https://www.tableau.com/) and the [Interactive Data
Lab's](https://idl.cs.washington.edu/)
[Polestar](https://github.com/vega/polestar) and
[Voyager](https://github.com/vega/voyager) are excellent examples of such UIs.

### Design approach and solution

We believe that these challenges can be addressed without the creation of yet
another visualization library that has a programmatic API and built-in
rendering. Altair's approach to building visualizations uses a layered design
that leverages the full capabilities of existing visualization libraries:

1. Create a constrained, simple Python API (Altair) that is purely declarative
2. Use the API (Altair) to emit JSON output that follows the Vega-Lite spec
3. Render that spec using existing visualization libraries

This approach enables users to perform exploratory visualizations with a much
simpler API initially, pick an appropriate renderer for their usage case, and
then leverage the full capabilities of that renderer for more advanced plot
customization.

We realize that a declarative API will necessarily be limited compared to the
full programmatic APIs of Matplotlib, Bokeh, etc. That is a deliberate design
choice we feel is needed to simplify the user experience of exploratory
visualization.

## Development install

Altair requires the following dependencies:

* [pandas](https://pandas.pydata.org/)
* [traitlets](https://github.com/ipython/traitlets)
* [IPython](https://github.com/ipython/ipython)

If you have cloned the repository, run the following command from the root of the repository:

```
pip install -e .[dev]
```

If you do not wish to clone the repository, you can install using:

```
pip install git+https://github.com/altair-viz/altair
```

## Testing

To run the test suite you must have [py.test](https://pytest.org/latest/) installed.
To run the tests, use

```
py.test --pyargs altair
```
(you can omit the `--pyargs` flag if you are running the tests from a source checkout).

## Feedback and Contribution

See [`CONTRIBUTING.md`](https://github.com/altair-viz/altair/blob/master/CONTRIBUTING.md)

## Citing Altair

[![JOSS Paper](https://joss.theoj.org/papers/10.21105/joss.01057/status.svg)](https://joss.theoj.org/papers/10.21105/joss.01057)

If you use Altair in academic work, please consider citing https://joss.theoj.org/papers/10.21105/joss.01057 as

```bib
@article{VanderPlas2018,
    doi = {10.21105/joss.01057},
    url = {https://doi.org/10.21105/joss.01057},
    year = {2018},
    publisher = {The Open Journal},
    volume = {3},
    number = {32},
    pages = {1057},
    author = {Jacob VanderPlas and Brian Granger and Jeffrey Heer and Dominik Moritz and Kanit Wongsuphasawat and Arvind Satyanarayan and Eitan Lees and Ilia Timofeev and Ben Welsh and Scott Sievert},
    title = {Altair: Interactive Statistical Visualizations for Python},
    journal = {Journal of Open Source Software}
}
```
Please additionally consider citing the [vega-lite](https://vega.github.io/vega-lite/) project, which Altair is based on: https://dl.acm.org/doi/10.1109/TVCG.2016.2599030
```bib
@article{Satyanarayan2017,
    author={Satyanarayan, Arvind and Moritz, Dominik and Wongsuphasawat, Kanit and Heer, Jeffrey},
    title={Vega-Lite: A Grammar of Interactive Graphics},
    journal={IEEE transactions on visualization and computer graphics},
    year={2017},
    volume={23},
    number={1},
    pages={341-350},
    publisher={IEEE}
} 
```

## Whence Altair?

Altair is the [brightest star](https://en.wikipedia.org/wiki/Altair) in the constellation Aquila, and along with Deneb and Vega forms the northern-hemisphere asterism known as the [Summer Triangle](https://en.wikipedia.org/wiki/Summer_Triangle).


%package help
Summary:	Development documents and examples for altair
Provides:	python3-altair-doc
%description help
# Altair <a href="https://altair-viz.github.io/"><img align="right" src="https://altair-viz.github.io/_static/altair-logo-light.png" height="50"></img></a>

[![build status](https://img.shields.io/travis/altair-viz/altair/master.svg?style=flat)](https://travis-ci.org/altair-viz/altair)
[![github actions](https://github.com/altair-viz/altair/workflows/build/badge.svg)](https://github.com/altair-viz/altair/actions?query=workflow%3Abuild)
[![code style black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![JOSS Paper](https://joss.theoj.org/papers/10.21105/joss.01057/status.svg)](https://joss.theoj.org/papers/10.21105/joss.01057)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/altair)](https://pypi.org/project/altair)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/altair-viz/altair_notebooks/master?urlpath=lab/tree/notebooks/Index.ipynb)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/altair-viz/altair_notebooks/blob/master/notebooks/Index.ipynb)

[https://altair-viz.github.io](https://altair-viz.github.io)

**Altair** is a declarative statistical visualization library for Python. With Altair, you can spend more time understanding your data and its meaning. Altair's
API is simple, friendly and consistent and built on top of the powerful
[Vega-Lite](https://github.com/vega/vega-lite) JSON specification. This elegant
simplicity produces beautiful and effective visualizations with a minimal amount of code. *Altair is developed by [Jake Vanderplas](https://github.com/jakevdp) and [Brian
Granger](https://github.com/ellisonbg) in close collaboration with the [UW
Interactive Data Lab](https://idl.cs.washington.edu/).*

## Altair Documentation

See [Altair's Documentation Site](https://altair-viz.github.io),
as well as Altair's [Tutorial Notebooks](https://github.com/altair-viz/altair_notebooks).

## Example

Here is an example using Altair to quickly visualize and display a dataset with the native Vega-Lite renderer in the JupyterLab:

```python
import altair as alt

# load a simple dataset as a pandas DataFrame
from vega_datasets import data
cars = data.cars()

alt.Chart(cars).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
)
```

![Altair Visualization](https://raw.githubusercontent.com/altair-viz/altair/master/images/cars.png)

One of the unique features of Altair, inherited from Vega-Lite, is a declarative grammar of not just visualization, but _interaction_. 
With a few modifications to the example above we can create a linked histogram that is filtered based on a selection of the scatter plot.

```python 
import altair as alt
from vega_datasets import data

source = data.cars()

brush = alt.selection(type='interval')

points = alt.Chart(source).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color=alt.condition(brush, 'Origin', alt.value('lightgray'))
).add_selection(
    brush
)

bars = alt.Chart(source).mark_bar().encode(
    y='Origin',
    color='Origin',
    x='count(Origin)'
).transform_filter(
    brush
)

points & bars
```

![Altair Visualization Gif](https://raw.githubusercontent.com/altair-viz/altair/master/images/cars_scatter_bar.gif)


## Getting your Questions Answered

If you have a question that is not addressed in the documentation, there are several ways to ask:

- open a [Github Issue](https://github.com/altair-viz/altair/issues)
- post a [StackOverflow Question](https://stackoverflow.com/questions/tagged/altair) (be sure to use the `altair` tag)
- ask on the [Altair Google Group](https://groups.google.com/forum/#!forum/altair-viz)

We'll do our best to get your question answered

## A Python API for statistical visualizations

Altair provides a Python API for building statistical visualizations in a declarative
manner. By statistical visualization we mean:

* The **data source** is a `DataFrame` that consists of columns of different data types (quantitative, ordinal, nominal and date/time).
* The `DataFrame` is in a [tidy format](https://vita.had.co.nz/papers/tidy-data.pdf)
  where the rows correspond to samples and the columns correspond to the observed variables.
* The data is mapped to the **visual properties** (position, color, size, shape,
  faceting, etc.) using the group-by data transformation.

The Altair API contains no actual visualization rendering code but instead
emits JSON data structures following the
[Vega-Lite](https://github.com/vega/vega-lite) specification. The resulting
Vega-Lite JSON data can be rendered in the following user-interfaces:

* [Jupyter Notebook](https://github.com/jupyter/notebook) (by installing [ipyvega](https://github.com/vega/ipyvega)).
* [JupyterLab](https://github.com/jupyterlab/jupyterlab) (no additional dependencies needed).
* [nteract](https://github.com/nteract/nteract) (no additional dependencies needed).

## Features

* Carefully-designed, declarative Python API based on
  [traitlets](https://github.com/ipython/traitlets).
* Auto-generated internal Python API that guarantees visualizations are type-checked and
  in full conformance with the [Vega-Lite](https://github.com/vega/vega-lite)
  specification.
* Auto-generate Altair Python code from a Vega-Lite JSON spec.
* Display visualizations in the live Jupyter Notebook, JupyterLab, nteract, on GitHub and
  [nbviewer](https://nbviewer.jupyter.org/).
* Export visualizations to PNG/SVG images, stand-alone HTML pages and the
[Online Vega-Lite Editor](https://vega.github.io/editor/#/).
* Serialize visualizations as JSON files.
* Explore Altair with dozens of examples in the [Example Gallery](https://altair-viz.github.io/gallery/index.html)

## Installation

To use Altair for visualization, you need to install two sets of tools

1. The core Altair Package and its dependencies

2. The renderer for the frontend you wish to use (i.e. `Jupyter Notebook`,
   `JupyterLab`, or `nteract`)

Altair can be installed with either ``pip`` or with ``conda``.
For full installation instructions, please see
https://altair-viz.github.io/getting_started/installation.html

## Example and tutorial notebooks

We maintain a separate Github repository of Jupyter Notebooks that contain an
interactive tutorial and examples:

https://github.com/altair-viz/altair_notebooks

To launch a live notebook server with those notebook using [binder](https://mybinder.org/) or
[Colab](https://colab.research.google.com), click on one of the following badges:

[![Binder](https://beta.mybinder.org/badge.svg)](https://beta.mybinder.org/v2/gh/altair-viz/altair_notebooks/master)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/altair-viz/altair_notebooks/blob/master/notebooks/Index.ipynb)

## Project philosophy

Many excellent plotting libraries exist in Python, including the main ones:

* [Matplotlib](https://matplotlib.org/)
* [Bokeh](https://bokeh.pydata.org/en/latest/)
* [Seaborn](https://seaborn.pydata.org/)
* [Lightning](https://github.com/lightning-viz/lightning)
* [Plotly](https://plot.ly/)
* [Pandas built-in plotting](https://pandas.pydata.org/pandas-docs/stable/visualization.html)
* [HoloViews](https://holoviews.org)
* [VisPy](https://vispy.org/)
* [pygg](https://www.github.com/sirrice/pygg)

Each library does a particular set of things well.

### User challenges

However, such a proliferation of options creates great difficulty for users
as they have to wade through all of these APIs to find which of them is the
best for the task at hand. None of these libraries are optimized for
high-level statistical visualization, so users have to assemble their own
using a mishmash of APIs. For individuals just learning data science, this
forces them to focus on learning APIs rather than exploring their data.

Another challenge is current plotting APIs require the user to write code,
even for incidental details of a visualization. This results in an unfortunate
and unnecessary cognitive burden as the visualization type (histogram,
scatterplot, etc.) can often be inferred using basic information such as the
columns of interest and the data types of those columns.

For example, if you are interested in the visualization of two numerical
columns, a scatterplot is almost certainly a good starting point. If you add
a categorical column to that, you probably want to encode that column using
colors or facets. If inferring the visualization proves difficult at times, a
simple user interface can construct a visualization without any coding.
[Tableau](https://www.tableau.com/) and the [Interactive Data
Lab's](https://idl.cs.washington.edu/)
[Polestar](https://github.com/vega/polestar) and
[Voyager](https://github.com/vega/voyager) are excellent examples of such UIs.

### Design approach and solution

We believe that these challenges can be addressed without the creation of yet
another visualization library that has a programmatic API and built-in
rendering. Altair's approach to building visualizations uses a layered design
that leverages the full capabilities of existing visualization libraries:

1. Create a constrained, simple Python API (Altair) that is purely declarative
2. Use the API (Altair) to emit JSON output that follows the Vega-Lite spec
3. Render that spec using existing visualization libraries

This approach enables users to perform exploratory visualizations with a much
simpler API initially, pick an appropriate renderer for their usage case, and
then leverage the full capabilities of that renderer for more advanced plot
customization.

We realize that a declarative API will necessarily be limited compared to the
full programmatic APIs of Matplotlib, Bokeh, etc. That is a deliberate design
choice we feel is needed to simplify the user experience of exploratory
visualization.

## Development install

Altair requires the following dependencies:

* [pandas](https://pandas.pydata.org/)
* [traitlets](https://github.com/ipython/traitlets)
* [IPython](https://github.com/ipython/ipython)

If you have cloned the repository, run the following command from the root of the repository:

```
pip install -e .[dev]
```

If you do not wish to clone the repository, you can install using:

```
pip install git+https://github.com/altair-viz/altair
```

## Testing

To run the test suite you must have [py.test](https://pytest.org/latest/) installed.
To run the tests, use

```
py.test --pyargs altair
```
(you can omit the `--pyargs` flag if you are running the tests from a source checkout).

## Feedback and Contribution

See [`CONTRIBUTING.md`](https://github.com/altair-viz/altair/blob/master/CONTRIBUTING.md)

## Citing Altair

[![JOSS Paper](https://joss.theoj.org/papers/10.21105/joss.01057/status.svg)](https://joss.theoj.org/papers/10.21105/joss.01057)

If you use Altair in academic work, please consider citing https://joss.theoj.org/papers/10.21105/joss.01057 as

```bib
@article{VanderPlas2018,
    doi = {10.21105/joss.01057},
    url = {https://doi.org/10.21105/joss.01057},
    year = {2018},
    publisher = {The Open Journal},
    volume = {3},
    number = {32},
    pages = {1057},
    author = {Jacob VanderPlas and Brian Granger and Jeffrey Heer and Dominik Moritz and Kanit Wongsuphasawat and Arvind Satyanarayan and Eitan Lees and Ilia Timofeev and Ben Welsh and Scott Sievert},
    title = {Altair: Interactive Statistical Visualizations for Python},
    journal = {Journal of Open Source Software}
}
```
Please additionally consider citing the [vega-lite](https://vega.github.io/vega-lite/) project, which Altair is based on: https://dl.acm.org/doi/10.1109/TVCG.2016.2599030
```bib
@article{Satyanarayan2017,
    author={Satyanarayan, Arvind and Moritz, Dominik and Wongsuphasawat, Kanit and Heer, Jeffrey},
    title={Vega-Lite: A Grammar of Interactive Graphics},
    journal={IEEE transactions on visualization and computer graphics},
    year={2017},
    volume={23},
    number={1},
    pages={341-350},
    publisher={IEEE}
} 
```

## Whence Altair?

Altair is the [brightest star](https://en.wikipedia.org/wiki/Altair) in the constellation Aquila, and along with Deneb and Vega forms the northern-hemisphere asterism known as the [Summer Triangle](https://en.wikipedia.org/wiki/Summer_Triangle).


%prep
%autosetup -n altair-4.2.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-altair -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Apr 21 2023 Python_Bot <Python_Bot@openeuler.org> - 4.2.2-1
- Package Spec generated