diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-05-05 10:29:25 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-05-05 10:29:25 +0000 |
| commit | f4628e6437fcbd5fcad15e74eeebf2ee7f3d3f4f (patch) | |
| tree | e50562457fc651081d9c2215e9769c2629fa4f88 | |
| parent | e33ffd6cda3a6b379b1792fcda6f9431fc8cf6b0 (diff) | |
automatic import of python-amiciopeneuler20.03
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-amici.spec | 537 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 539 insertions, 0 deletions
@@ -0,0 +1 @@ +/amici-0.16.1.tar.gz diff --git a/python-amici.spec b/python-amici.spec new file mode 100644 index 0000000..aa8ab78 --- /dev/null +++ b/python-amici.spec @@ -0,0 +1,537 @@ +%global _empty_manifest_terminate_build 0 +Name: python-amici +Version: 0.16.1 +Release: 1 +Summary: Advanced multi-language Interface to CVODES and IDAS +License: BSD 3-Clause License +URL: https://github.com/AMICI-dev/AMICI +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/a3/01/dda1b86559667af98c446493de359c119dc776128c43310d14a9200d0d56/amici-0.16.1.tar.gz +BuildArch: noarch + + +%description +<img src="https://raw.githubusercontent.com/AMICI-dev/AMICI/master/documentation/gfx/banner.png" height="60" align="left" alt="AMICI logo"> + +## Advanced Multilanguage Interface for CVODES and IDAS + +## About + +AMICI provides a multi-language (Python, C++, Matlab) interface for the +[SUNDIALS](https://computing.llnl.gov/projects/sundials/) solvers +[CVODES](https://computing.llnl.gov/projects/sundials/cvodes) +(for ordinary differential equations) and +[IDAS](https://computing.llnl.gov/projects/sundials/idas) +(for algebraic differential equations). AMICI allows the user to read +differential equation models specified as [SBML](http://sbml.org/) +or [PySB](http://pysb.org/) +and automatically compiles such models into Python modules, C++ libraries or +Matlab `.mex` simulation files. + +In contrast to the (no longer maintained) +[sundialsTB](https://computing.llnl.gov/projects/sundials/sundials-software) +Matlab interface, all necessary functions are transformed into native +C++ code, which allows for a significantly faster simulation. + +Beyond forward integration, the compiled simulation file also allows for +forward sensitivity analysis, steady state sensitivity analysis and +adjoint sensitivity analysis for likelihood-based output functions. + +The interface was designed to provide routines for efficient gradient +computation in parameter estimation of biochemical reaction models, but +it is also applicable to a wider range of differential equation +constrained optimization problems. + +## Current build status + +<a href="https://badge.fury.io/py/amici"> + <img src="https://badge.fury.io/py/amici.svg" alt="PyPI version"></a> +<a href="https://github.com/AMICI-dev/AMICI/actions/workflows/test_pypi.yml"> + <img src="https://github.com/AMICI-dev/AMICI/actions/workflows/test_pypi.yml/badge.svg" alt="PyPI installation"></a> +<a href="https://codecov.io/gh/AMICI-dev/AMICI"> + <img src="https://codecov.io/gh/AMICI-dev/AMICI/branch/master/graph/badge.svg" alt="Code coverage"></a> +<a href="https://sonarcloud.io/dashboard?id=ICB-DCM_AMICI&branch=master"> + <img src="https://sonarcloud.io/api/project_badges/measure?branch=master&project=ICB-DCM_AMICI&metric=sqale_index" alt="SonarCloud technical debt"></a> +<a href="https://zenodo.org/badge/latestdoi/43677177"> + <img src="https://zenodo.org/badge/43677177.svg" alt="Zenodo DOI"></a> +<a href="https://amici.readthedocs.io/en/latest/?badge=latest"> + <img src="https://readthedocs.org/projects/amici/badge/?version=latest" alt="ReadTheDocs status"></a> +<a href="https://bestpractices.coreinfrastructure.org/projects/3780"> + <img src="https://bestpractices.coreinfrastructure.org/projects/3780/badge" alt="coreinfrastructure bestpractices badge"></a> + +## Features + +* SBML import +* PySB import +* Generation of C++ code for model simulation and sensitivity + computation +* Access to and high customizability of CVODES and IDAS solver +* Python, C++, Matlab interface +* Sensitivity analysis + * forward + * steady state + * adjoint + * first- and second-order +* Pre-equilibration and pre-simulation conditions +* Support for + [discrete events and logical operations](https://academic.oup.com/bioinformatics/article/33/7/1049/2769435) + +## Interfaces & workflow + +The AMICI workflow starts with importing a model from either +[SBML](http://sbml.org/) (Matlab, Python), [PySB](http://pysb.org/) (Python), +or a Matlab definition of the model (Matlab-only). From this input, +all equations for model simulation +are derived symbolically and C++ code is generated. This code is then +compiled into a C++ library, a Python module, or a Matlab `.mex` file and +is then used for model simulation. + + + +## Getting started + +The AMICI source code is available at https://github.com/AMICI-dev/AMICI/. +To install AMICI, first read the installation instructions for +[Python](https://amici.readthedocs.io/en/latest/python_installation.html), +[C++](https://amici.readthedocs.io/en/develop/cpp_installation.html) or +[Matlab](https://amici.readthedocs.io/en/develop/matlab_installation.html). + +To get you started with Python-AMICI, the best way might be checking out this +[Jupyter notebook](https://github.com/AMICI-dev/AMICI/blob/master/documentation/GettingStarted.ipynb) +[](https://mybinder.org/v2/gh/AMICI-dev/AMICI/develop?labpath=documentation%2FGettingStarted.ipynb). + +To get started with Matlab-AMICI, various examples are available +in [matlab/examples/](https://github.com/AMICI-dev/AMICI/tree/master/matlab/examples). + +Comprehensive documentation is available at +[https://amici.readthedocs.io/en/latest/](https://amici.readthedocs.io/en/latest/). + +Any [contributions](https://amici.readthedocs.io/en/develop/CONTRIBUTING.html) +to AMICI are welcome (code, bug reports, suggestions for improvements, ...). + + +## Getting help + +In case of questions or problems with using AMICI, feel free to post an +[issue](https://github.com/AMICI-dev/AMICI/issues) on GitHub. We are trying to +get back to you quickly. + +## Projects using AMICI + +There are several tools for parameter estimation offering good integration +with AMICI: + +* [pyPESTO](https://github.com/ICB-DCM/pyPESTO): Python library for + optimization, sampling and uncertainty analysis +* [pyABC](https://github.com/ICB-DCM/pyABC): Python library for + parallel and scalable ABC-SMC (Approximate Bayesian Computation - Sequential + Monte Carlo) +* [parPE](https://github.com/ICB-DCM/parPE): C++ library for parameter + estimation of ODE models offering distributed memory parallelism with focus + on problems with many simulation conditions. + +## Publications + +**Citeable DOI for the latest AMICI release:** +[](https://zenodo.org/badge/latestdoi/43677177) + +There is a list of [publications using AMICI](https://amici.readthedocs.io/en/latest/references.html). +If you used AMICI in your work, we are happy to include +your project, please let us know via a GitHub issue. + +When using AMICI in your project, please cite +* Fröhlich, F., Weindl, D., Schälte, Y., Pathirana, D., Paszkowski, Ł., Lines, G.T., Stapor, P. and Hasenauer, J., 2021. + AMICI: High-Performance Sensitivity Analysis for Large Ordinary Differential Equation Models. Bioinformatics, btab227, + [DOI:10.1093/bioinformatics/btab227](https://doi.org/10.1093/bioinformatics/btab227). +``` +@article{frohlich2020amici, + title={AMICI: High-Performance Sensitivity Analysis for Large Ordinary Differential Equation Models}, + author={Fr{\"o}hlich, Fabian and Weindl, Daniel and Sch{\"a}lte, Yannik and Pathirana, Dilan and Paszkowski, {\L}ukasz and Lines, Glenn Terje and Stapor, Paul and Hasenauer, Jan}, + journal = {Bioinformatics}, + year = {2021}, + month = {04}, + issn = {1367-4803}, + doi = {10.1093/bioinformatics/btab227}, + note = {btab227}, + eprint = {https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btab227/36866220/btab227.pdf}, +} +``` + +When presenting work that employs AMICI, feel free to use one of the icons in +[documentation/gfx/](https://github.com/AMICI-dev/AMICI/tree/master/documentation/gfx), +which are available under a +[CC0](https://github.com/AMICI-dev/AMICI/tree/master/documentation/gfx/LICENSE.md) +license: + +<p align="center"> + <img src="https://raw.githubusercontent.com/AMICI-dev/AMICI/master/documentation/gfx/logo_text.png" height="75" alt="AMICI Logo"> +</p> + + +%package -n python3-amici +Summary: Advanced multi-language Interface to CVODES and IDAS +Provides: python-amici +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-amici +<img src="https://raw.githubusercontent.com/AMICI-dev/AMICI/master/documentation/gfx/banner.png" height="60" align="left" alt="AMICI logo"> + +## Advanced Multilanguage Interface for CVODES and IDAS + +## About + +AMICI provides a multi-language (Python, C++, Matlab) interface for the +[SUNDIALS](https://computing.llnl.gov/projects/sundials/) solvers +[CVODES](https://computing.llnl.gov/projects/sundials/cvodes) +(for ordinary differential equations) and +[IDAS](https://computing.llnl.gov/projects/sundials/idas) +(for algebraic differential equations). AMICI allows the user to read +differential equation models specified as [SBML](http://sbml.org/) +or [PySB](http://pysb.org/) +and automatically compiles such models into Python modules, C++ libraries or +Matlab `.mex` simulation files. + +In contrast to the (no longer maintained) +[sundialsTB](https://computing.llnl.gov/projects/sundials/sundials-software) +Matlab interface, all necessary functions are transformed into native +C++ code, which allows for a significantly faster simulation. + +Beyond forward integration, the compiled simulation file also allows for +forward sensitivity analysis, steady state sensitivity analysis and +adjoint sensitivity analysis for likelihood-based output functions. + +The interface was designed to provide routines for efficient gradient +computation in parameter estimation of biochemical reaction models, but +it is also applicable to a wider range of differential equation +constrained optimization problems. + +## Current build status + +<a href="https://badge.fury.io/py/amici"> + <img src="https://badge.fury.io/py/amici.svg" alt="PyPI version"></a> +<a href="https://github.com/AMICI-dev/AMICI/actions/workflows/test_pypi.yml"> + <img src="https://github.com/AMICI-dev/AMICI/actions/workflows/test_pypi.yml/badge.svg" alt="PyPI installation"></a> +<a href="https://codecov.io/gh/AMICI-dev/AMICI"> + <img src="https://codecov.io/gh/AMICI-dev/AMICI/branch/master/graph/badge.svg" alt="Code coverage"></a> +<a href="https://sonarcloud.io/dashboard?id=ICB-DCM_AMICI&branch=master"> + <img src="https://sonarcloud.io/api/project_badges/measure?branch=master&project=ICB-DCM_AMICI&metric=sqale_index" alt="SonarCloud technical debt"></a> +<a href="https://zenodo.org/badge/latestdoi/43677177"> + <img src="https://zenodo.org/badge/43677177.svg" alt="Zenodo DOI"></a> +<a href="https://amici.readthedocs.io/en/latest/?badge=latest"> + <img src="https://readthedocs.org/projects/amici/badge/?version=latest" alt="ReadTheDocs status"></a> +<a href="https://bestpractices.coreinfrastructure.org/projects/3780"> + <img src="https://bestpractices.coreinfrastructure.org/projects/3780/badge" alt="coreinfrastructure bestpractices badge"></a> + +## Features + +* SBML import +* PySB import +* Generation of C++ code for model simulation and sensitivity + computation +* Access to and high customizability of CVODES and IDAS solver +* Python, C++, Matlab interface +* Sensitivity analysis + * forward + * steady state + * adjoint + * first- and second-order +* Pre-equilibration and pre-simulation conditions +* Support for + [discrete events and logical operations](https://academic.oup.com/bioinformatics/article/33/7/1049/2769435) + +## Interfaces & workflow + +The AMICI workflow starts with importing a model from either +[SBML](http://sbml.org/) (Matlab, Python), [PySB](http://pysb.org/) (Python), +or a Matlab definition of the model (Matlab-only). From this input, +all equations for model simulation +are derived symbolically and C++ code is generated. This code is then +compiled into a C++ library, a Python module, or a Matlab `.mex` file and +is then used for model simulation. + + + +## Getting started + +The AMICI source code is available at https://github.com/AMICI-dev/AMICI/. +To install AMICI, first read the installation instructions for +[Python](https://amici.readthedocs.io/en/latest/python_installation.html), +[C++](https://amici.readthedocs.io/en/develop/cpp_installation.html) or +[Matlab](https://amici.readthedocs.io/en/develop/matlab_installation.html). + +To get you started with Python-AMICI, the best way might be checking out this +[Jupyter notebook](https://github.com/AMICI-dev/AMICI/blob/master/documentation/GettingStarted.ipynb) +[](https://mybinder.org/v2/gh/AMICI-dev/AMICI/develop?labpath=documentation%2FGettingStarted.ipynb). + +To get started with Matlab-AMICI, various examples are available +in [matlab/examples/](https://github.com/AMICI-dev/AMICI/tree/master/matlab/examples). + +Comprehensive documentation is available at +[https://amici.readthedocs.io/en/latest/](https://amici.readthedocs.io/en/latest/). + +Any [contributions](https://amici.readthedocs.io/en/develop/CONTRIBUTING.html) +to AMICI are welcome (code, bug reports, suggestions for improvements, ...). + + +## Getting help + +In case of questions or problems with using AMICI, feel free to post an +[issue](https://github.com/AMICI-dev/AMICI/issues) on GitHub. We are trying to +get back to you quickly. + +## Projects using AMICI + +There are several tools for parameter estimation offering good integration +with AMICI: + +* [pyPESTO](https://github.com/ICB-DCM/pyPESTO): Python library for + optimization, sampling and uncertainty analysis +* [pyABC](https://github.com/ICB-DCM/pyABC): Python library for + parallel and scalable ABC-SMC (Approximate Bayesian Computation - Sequential + Monte Carlo) +* [parPE](https://github.com/ICB-DCM/parPE): C++ library for parameter + estimation of ODE models offering distributed memory parallelism with focus + on problems with many simulation conditions. + +## Publications + +**Citeable DOI for the latest AMICI release:** +[](https://zenodo.org/badge/latestdoi/43677177) + +There is a list of [publications using AMICI](https://amici.readthedocs.io/en/latest/references.html). +If you used AMICI in your work, we are happy to include +your project, please let us know via a GitHub issue. + +When using AMICI in your project, please cite +* Fröhlich, F., Weindl, D., Schälte, Y., Pathirana, D., Paszkowski, Ł., Lines, G.T., Stapor, P. and Hasenauer, J., 2021. + AMICI: High-Performance Sensitivity Analysis for Large Ordinary Differential Equation Models. Bioinformatics, btab227, + [DOI:10.1093/bioinformatics/btab227](https://doi.org/10.1093/bioinformatics/btab227). +``` +@article{frohlich2020amici, + title={AMICI: High-Performance Sensitivity Analysis for Large Ordinary Differential Equation Models}, + author={Fr{\"o}hlich, Fabian and Weindl, Daniel and Sch{\"a}lte, Yannik and Pathirana, Dilan and Paszkowski, {\L}ukasz and Lines, Glenn Terje and Stapor, Paul and Hasenauer, Jan}, + journal = {Bioinformatics}, + year = {2021}, + month = {04}, + issn = {1367-4803}, + doi = {10.1093/bioinformatics/btab227}, + note = {btab227}, + eprint = {https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btab227/36866220/btab227.pdf}, +} +``` + +When presenting work that employs AMICI, feel free to use one of the icons in +[documentation/gfx/](https://github.com/AMICI-dev/AMICI/tree/master/documentation/gfx), +which are available under a +[CC0](https://github.com/AMICI-dev/AMICI/tree/master/documentation/gfx/LICENSE.md) +license: + +<p align="center"> + <img src="https://raw.githubusercontent.com/AMICI-dev/AMICI/master/documentation/gfx/logo_text.png" height="75" alt="AMICI Logo"> +</p> + + +%package help +Summary: Development documents and examples for amici +Provides: python3-amici-doc +%description help +<img src="https://raw.githubusercontent.com/AMICI-dev/AMICI/master/documentation/gfx/banner.png" height="60" align="left" alt="AMICI logo"> + +## Advanced Multilanguage Interface for CVODES and IDAS + +## About + +AMICI provides a multi-language (Python, C++, Matlab) interface for the +[SUNDIALS](https://computing.llnl.gov/projects/sundials/) solvers +[CVODES](https://computing.llnl.gov/projects/sundials/cvodes) +(for ordinary differential equations) and +[IDAS](https://computing.llnl.gov/projects/sundials/idas) +(for algebraic differential equations). AMICI allows the user to read +differential equation models specified as [SBML](http://sbml.org/) +or [PySB](http://pysb.org/) +and automatically compiles such models into Python modules, C++ libraries or +Matlab `.mex` simulation files. + +In contrast to the (no longer maintained) +[sundialsTB](https://computing.llnl.gov/projects/sundials/sundials-software) +Matlab interface, all necessary functions are transformed into native +C++ code, which allows for a significantly faster simulation. + +Beyond forward integration, the compiled simulation file also allows for +forward sensitivity analysis, steady state sensitivity analysis and +adjoint sensitivity analysis for likelihood-based output functions. + +The interface was designed to provide routines for efficient gradient +computation in parameter estimation of biochemical reaction models, but +it is also applicable to a wider range of differential equation +constrained optimization problems. + +## Current build status + +<a href="https://badge.fury.io/py/amici"> + <img src="https://badge.fury.io/py/amici.svg" alt="PyPI version"></a> +<a href="https://github.com/AMICI-dev/AMICI/actions/workflows/test_pypi.yml"> + <img src="https://github.com/AMICI-dev/AMICI/actions/workflows/test_pypi.yml/badge.svg" alt="PyPI installation"></a> +<a href="https://codecov.io/gh/AMICI-dev/AMICI"> + <img src="https://codecov.io/gh/AMICI-dev/AMICI/branch/master/graph/badge.svg" alt="Code coverage"></a> +<a href="https://sonarcloud.io/dashboard?id=ICB-DCM_AMICI&branch=master"> + <img src="https://sonarcloud.io/api/project_badges/measure?branch=master&project=ICB-DCM_AMICI&metric=sqale_index" alt="SonarCloud technical debt"></a> +<a href="https://zenodo.org/badge/latestdoi/43677177"> + <img src="https://zenodo.org/badge/43677177.svg" alt="Zenodo DOI"></a> +<a href="https://amici.readthedocs.io/en/latest/?badge=latest"> + <img src="https://readthedocs.org/projects/amici/badge/?version=latest" alt="ReadTheDocs status"></a> +<a href="https://bestpractices.coreinfrastructure.org/projects/3780"> + <img src="https://bestpractices.coreinfrastructure.org/projects/3780/badge" alt="coreinfrastructure bestpractices badge"></a> + +## Features + +* SBML import +* PySB import +* Generation of C++ code for model simulation and sensitivity + computation +* Access to and high customizability of CVODES and IDAS solver +* Python, C++, Matlab interface +* Sensitivity analysis + * forward + * steady state + * adjoint + * first- and second-order +* Pre-equilibration and pre-simulation conditions +* Support for + [discrete events and logical operations](https://academic.oup.com/bioinformatics/article/33/7/1049/2769435) + +## Interfaces & workflow + +The AMICI workflow starts with importing a model from either +[SBML](http://sbml.org/) (Matlab, Python), [PySB](http://pysb.org/) (Python), +or a Matlab definition of the model (Matlab-only). From this input, +all equations for model simulation +are derived symbolically and C++ code is generated. This code is then +compiled into a C++ library, a Python module, or a Matlab `.mex` file and +is then used for model simulation. + + + +## Getting started + +The AMICI source code is available at https://github.com/AMICI-dev/AMICI/. +To install AMICI, first read the installation instructions for +[Python](https://amici.readthedocs.io/en/latest/python_installation.html), +[C++](https://amici.readthedocs.io/en/develop/cpp_installation.html) or +[Matlab](https://amici.readthedocs.io/en/develop/matlab_installation.html). + +To get you started with Python-AMICI, the best way might be checking out this +[Jupyter notebook](https://github.com/AMICI-dev/AMICI/blob/master/documentation/GettingStarted.ipynb) +[](https://mybinder.org/v2/gh/AMICI-dev/AMICI/develop?labpath=documentation%2FGettingStarted.ipynb). + +To get started with Matlab-AMICI, various examples are available +in [matlab/examples/](https://github.com/AMICI-dev/AMICI/tree/master/matlab/examples). + +Comprehensive documentation is available at +[https://amici.readthedocs.io/en/latest/](https://amici.readthedocs.io/en/latest/). + +Any [contributions](https://amici.readthedocs.io/en/develop/CONTRIBUTING.html) +to AMICI are welcome (code, bug reports, suggestions for improvements, ...). + + +## Getting help + +In case of questions or problems with using AMICI, feel free to post an +[issue](https://github.com/AMICI-dev/AMICI/issues) on GitHub. We are trying to +get back to you quickly. + +## Projects using AMICI + +There are several tools for parameter estimation offering good integration +with AMICI: + +* [pyPESTO](https://github.com/ICB-DCM/pyPESTO): Python library for + optimization, sampling and uncertainty analysis +* [pyABC](https://github.com/ICB-DCM/pyABC): Python library for + parallel and scalable ABC-SMC (Approximate Bayesian Computation - Sequential + Monte Carlo) +* [parPE](https://github.com/ICB-DCM/parPE): C++ library for parameter + estimation of ODE models offering distributed memory parallelism with focus + on problems with many simulation conditions. + +## Publications + +**Citeable DOI for the latest AMICI release:** +[](https://zenodo.org/badge/latestdoi/43677177) + +There is a list of [publications using AMICI](https://amici.readthedocs.io/en/latest/references.html). +If you used AMICI in your work, we are happy to include +your project, please let us know via a GitHub issue. + +When using AMICI in your project, please cite +* Fröhlich, F., Weindl, D., Schälte, Y., Pathirana, D., Paszkowski, Ł., Lines, G.T., Stapor, P. and Hasenauer, J., 2021. + AMICI: High-Performance Sensitivity Analysis for Large Ordinary Differential Equation Models. Bioinformatics, btab227, + [DOI:10.1093/bioinformatics/btab227](https://doi.org/10.1093/bioinformatics/btab227). +``` +@article{frohlich2020amici, + title={AMICI: High-Performance Sensitivity Analysis for Large Ordinary Differential Equation Models}, + author={Fr{\"o}hlich, Fabian and Weindl, Daniel and Sch{\"a}lte, Yannik and Pathirana, Dilan and Paszkowski, {\L}ukasz and Lines, Glenn Terje and Stapor, Paul and Hasenauer, Jan}, + journal = {Bioinformatics}, + year = {2021}, + month = {04}, + issn = {1367-4803}, + doi = {10.1093/bioinformatics/btab227}, + note = {btab227}, + eprint = {https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btab227/36866220/btab227.pdf}, +} +``` + +When presenting work that employs AMICI, feel free to use one of the icons in +[documentation/gfx/](https://github.com/AMICI-dev/AMICI/tree/master/documentation/gfx), +which are available under a +[CC0](https://github.com/AMICI-dev/AMICI/tree/master/documentation/gfx/LICENSE.md) +license: + +<p align="center"> + <img src="https://raw.githubusercontent.com/AMICI-dev/AMICI/master/documentation/gfx/logo_text.png" height="75" alt="AMICI Logo"> +</p> + + +%prep +%autosetup -n amici-0.16.1 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-amici -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.16.1-1 +- Package Spec generated @@ -0,0 +1 @@ +7945da68eeed52ea2a1f7526af5a44a4 amici-0.16.1.tar.gz |
