summaryrefslogtreecommitdiff
path: root/python-anaties.spec
blob: 1cb31dc042c55f3aa3b88682db1ed8ba2f9ee70c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
%global _empty_manifest_terminate_build 0
Name:		python-anaties
Version:	0.1.4.6
Release:	1
Summary:	Common analysis utilities
License:	MIT
URL:		https://github.com/EricThomson/anaties
Source0:	https://mirrors.aliyun.com/pypi/web/packages/94/d1/f49b1659acfa4434e508f8c8b703a9f4135760eb9843b90043c8ab370cdd/anaties-0.1.4.6.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-matplotlib
Requires:	python3-scipy

%description
# anaties
Anaties (contraction of 'analysis utilities'). A place for common operations like signal smoothing that are useful across all my data analysis projects.


## Installation and usage
Install with pip:

    pip install anaties

When a new release is made, upgrade with:

    pip install anaties --upgrade

Usage is simple. In your code:

    import anaties as ana
    ana.function_name()

You can test it out with:

    import anaties as ana
    print(ana.datetime_string())

    plt.plot([0, 1], [0,1], color='k', linewidth=0.6)
    ana.rect_highlight([0.25, 0.5])

All other functions are listed below.

## Brief summary of all utilities

        signals.py (for 1d data arrays, or arrays of such arrays)
            - smooth: smooth a signal with a window (gaussian, etc)
            - smooth_rows: smooth each row of a 2d array using smooth()
            - power_spec: get the power spectral density or power spectrum
            - spectrogram: calculate/plot spectrogram of a signal
            - notch_filter: notch filter to attenuate specific frequency (e.g. 60hz)
            - bandpass_filter: allow through frequencies within low- and high-cutoff

        plots.py (basic plotting)
            - error_shade: plot line with shaded error region
            - freqhist: calculate/plot a relative frequency histogram
            - paired_bar: bar plot for paired data
            - plot_with_events: plot with vertical lines to indicate events
            - rect_highlight: overlay rectangular highlight to figure
            - vlines: add vertical lines to figure

        stats (basic statistical things)
            - collective_correlation: collective correlation coefficient
            - med_semed: median and std error of median of an array
            - mean_sem: mean and std error of the mean of an array
            - mean_std: mean and standard deviation of an array
            - se_mean: std err of mean of array
            - se_median: std error of median of array
            - cramers_v: cramers v for effect size for chi-square test

        helpers.py (generic utility functions for use everywhere)
            - datetime_string : return date_time string to use for naming files etc
            - file_exists: check to see if file exists
            - get_bins: get bin edges and centers, given limits and bin width
            - get_offdiag_vals: get lower off-diagonal values of a symmetric matrix
            - ind_limits: return indices that contain array data within range
            - is_symmetric: check if 2d array is symmetric
            - rand_rgb: returns random array of rgb values

## Acknowledgments
- Songbird wav is open source from: https://freesound.org/people/Sonic-ranger/sounds/243677/
- Developed with the support from NIH Bioinformatics and the Neurobehavioral Core at NIEHS.

## To do: More important
- finish adding tests.
- plots.rect_highlight should just use axvspan/axhspan!
- use median instead of mean in spectrogram
- add proper documentation and tests to stats module.
- integrate vlines into pypi and version up (maybe good test for ci)
- add ax return for all plot functions, when possible.
- finish plots.twinx and make sure it works
- add test for plots.error_shade.
- Add return object for plots.rect_highlight()
- consider adding directory_exists to helpers
- paired_bar and mean_sem/std need to handle one point better (throws warning)
- Add a proper suptitle fix in aplots it is a pita to add manually/remember:
      f.suptitle(..., fontsize=16)
      f.tight_layout()
      f.subplots_adjust(top=0.9)
- For freqhist should I guarantee it sums to 1 even when bin widths don't match data limits? Probably not. Something to think about though.
- In smoother, consider switching from filtfilt() to sosfiltfilt() for reasons laid out here: https://dsp.stackexchange.com/a/17255/51564
- Convert notch filter to sos?
- For spectral density estimation consider adding multitaper option. Good discussions:
https://github.com/cokelaer/spectrum
https://pyspectrum.readthedocs.io/en/latest/
https://mark-kramer.github.io/Case-Studies-Python/04.html
- add ability to control event colors in spectrogram.
- ind_limits: add checks for data, data_limits, clarify description and docs
- Add numerical tests with random seed set not just graphical eyeball tests.

## To do: longer term
- Add audio playback of signals (see notes in audio_playback_workspace), incorporate this into some tests of filtering, etc.. simpleaudio package is too simple I think.
- autodocs (sphinx?)
- CI/CD with github actions
- consider adding wavelets.
- Add 3d array support for stat functions like mn_sem

## Useful sources
### Smoothing
- https://scipy-cookbook.readthedocs.io/items/FiltFilt.html
- https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.filtfilt.html

### What about wavelets?
I may add wavelets at some point, but it isn't plug-and-play enough for this repo. If you want to get started with wavelets in Python, I recommend http://ataspinar.com/2018/12/21/a-guide-for-using-the-wavelet-transform-in-machine-learning/

### Tolerance values
For a discussion of the difference between relative and absolute tolerance values when testing floats for equality (for instance as used in `helpers.is_symmetric()`) see:
 https://stackoverflow.com/questions/65909842/what-is-rtol-for-in-numpys-allclose-function

 ### Suggestions?
 If there is something you'd like to see, please open an issue.




%package -n python3-anaties
Summary:	Common analysis utilities
Provides:	python-anaties
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-anaties
# anaties
Anaties (contraction of 'analysis utilities'). A place for common operations like signal smoothing that are useful across all my data analysis projects.


## Installation and usage
Install with pip:

    pip install anaties

When a new release is made, upgrade with:

    pip install anaties --upgrade

Usage is simple. In your code:

    import anaties as ana
    ana.function_name()

You can test it out with:

    import anaties as ana
    print(ana.datetime_string())

    plt.plot([0, 1], [0,1], color='k', linewidth=0.6)
    ana.rect_highlight([0.25, 0.5])

All other functions are listed below.

## Brief summary of all utilities

        signals.py (for 1d data arrays, or arrays of such arrays)
            - smooth: smooth a signal with a window (gaussian, etc)
            - smooth_rows: smooth each row of a 2d array using smooth()
            - power_spec: get the power spectral density or power spectrum
            - spectrogram: calculate/plot spectrogram of a signal
            - notch_filter: notch filter to attenuate specific frequency (e.g. 60hz)
            - bandpass_filter: allow through frequencies within low- and high-cutoff

        plots.py (basic plotting)
            - error_shade: plot line with shaded error region
            - freqhist: calculate/plot a relative frequency histogram
            - paired_bar: bar plot for paired data
            - plot_with_events: plot with vertical lines to indicate events
            - rect_highlight: overlay rectangular highlight to figure
            - vlines: add vertical lines to figure

        stats (basic statistical things)
            - collective_correlation: collective correlation coefficient
            - med_semed: median and std error of median of an array
            - mean_sem: mean and std error of the mean of an array
            - mean_std: mean and standard deviation of an array
            - se_mean: std err of mean of array
            - se_median: std error of median of array
            - cramers_v: cramers v for effect size for chi-square test

        helpers.py (generic utility functions for use everywhere)
            - datetime_string : return date_time string to use for naming files etc
            - file_exists: check to see if file exists
            - get_bins: get bin edges and centers, given limits and bin width
            - get_offdiag_vals: get lower off-diagonal values of a symmetric matrix
            - ind_limits: return indices that contain array data within range
            - is_symmetric: check if 2d array is symmetric
            - rand_rgb: returns random array of rgb values

## Acknowledgments
- Songbird wav is open source from: https://freesound.org/people/Sonic-ranger/sounds/243677/
- Developed with the support from NIH Bioinformatics and the Neurobehavioral Core at NIEHS.

## To do: More important
- finish adding tests.
- plots.rect_highlight should just use axvspan/axhspan!
- use median instead of mean in spectrogram
- add proper documentation and tests to stats module.
- integrate vlines into pypi and version up (maybe good test for ci)
- add ax return for all plot functions, when possible.
- finish plots.twinx and make sure it works
- add test for plots.error_shade.
- Add return object for plots.rect_highlight()
- consider adding directory_exists to helpers
- paired_bar and mean_sem/std need to handle one point better (throws warning)
- Add a proper suptitle fix in aplots it is a pita to add manually/remember:
      f.suptitle(..., fontsize=16)
      f.tight_layout()
      f.subplots_adjust(top=0.9)
- For freqhist should I guarantee it sums to 1 even when bin widths don't match data limits? Probably not. Something to think about though.
- In smoother, consider switching from filtfilt() to sosfiltfilt() for reasons laid out here: https://dsp.stackexchange.com/a/17255/51564
- Convert notch filter to sos?
- For spectral density estimation consider adding multitaper option. Good discussions:
https://github.com/cokelaer/spectrum
https://pyspectrum.readthedocs.io/en/latest/
https://mark-kramer.github.io/Case-Studies-Python/04.html
- add ability to control event colors in spectrogram.
- ind_limits: add checks for data, data_limits, clarify description and docs
- Add numerical tests with random seed set not just graphical eyeball tests.

## To do: longer term
- Add audio playback of signals (see notes in audio_playback_workspace), incorporate this into some tests of filtering, etc.. simpleaudio package is too simple I think.
- autodocs (sphinx?)
- CI/CD with github actions
- consider adding wavelets.
- Add 3d array support for stat functions like mn_sem

## Useful sources
### Smoothing
- https://scipy-cookbook.readthedocs.io/items/FiltFilt.html
- https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.filtfilt.html

### What about wavelets?
I may add wavelets at some point, but it isn't plug-and-play enough for this repo. If you want to get started with wavelets in Python, I recommend http://ataspinar.com/2018/12/21/a-guide-for-using-the-wavelet-transform-in-machine-learning/

### Tolerance values
For a discussion of the difference between relative and absolute tolerance values when testing floats for equality (for instance as used in `helpers.is_symmetric()`) see:
 https://stackoverflow.com/questions/65909842/what-is-rtol-for-in-numpys-allclose-function

 ### Suggestions?
 If there is something you'd like to see, please open an issue.




%package help
Summary:	Development documents and examples for anaties
Provides:	python3-anaties-doc
%description help
# anaties
Anaties (contraction of 'analysis utilities'). A place for common operations like signal smoothing that are useful across all my data analysis projects.


## Installation and usage
Install with pip:

    pip install anaties

When a new release is made, upgrade with:

    pip install anaties --upgrade

Usage is simple. In your code:

    import anaties as ana
    ana.function_name()

You can test it out with:

    import anaties as ana
    print(ana.datetime_string())

    plt.plot([0, 1], [0,1], color='k', linewidth=0.6)
    ana.rect_highlight([0.25, 0.5])

All other functions are listed below.

## Brief summary of all utilities

        signals.py (for 1d data arrays, or arrays of such arrays)
            - smooth: smooth a signal with a window (gaussian, etc)
            - smooth_rows: smooth each row of a 2d array using smooth()
            - power_spec: get the power spectral density or power spectrum
            - spectrogram: calculate/plot spectrogram of a signal
            - notch_filter: notch filter to attenuate specific frequency (e.g. 60hz)
            - bandpass_filter: allow through frequencies within low- and high-cutoff

        plots.py (basic plotting)
            - error_shade: plot line with shaded error region
            - freqhist: calculate/plot a relative frequency histogram
            - paired_bar: bar plot for paired data
            - plot_with_events: plot with vertical lines to indicate events
            - rect_highlight: overlay rectangular highlight to figure
            - vlines: add vertical lines to figure

        stats (basic statistical things)
            - collective_correlation: collective correlation coefficient
            - med_semed: median and std error of median of an array
            - mean_sem: mean and std error of the mean of an array
            - mean_std: mean and standard deviation of an array
            - se_mean: std err of mean of array
            - se_median: std error of median of array
            - cramers_v: cramers v for effect size for chi-square test

        helpers.py (generic utility functions for use everywhere)
            - datetime_string : return date_time string to use for naming files etc
            - file_exists: check to see if file exists
            - get_bins: get bin edges and centers, given limits and bin width
            - get_offdiag_vals: get lower off-diagonal values of a symmetric matrix
            - ind_limits: return indices that contain array data within range
            - is_symmetric: check if 2d array is symmetric
            - rand_rgb: returns random array of rgb values

## Acknowledgments
- Songbird wav is open source from: https://freesound.org/people/Sonic-ranger/sounds/243677/
- Developed with the support from NIH Bioinformatics and the Neurobehavioral Core at NIEHS.

## To do: More important
- finish adding tests.
- plots.rect_highlight should just use axvspan/axhspan!
- use median instead of mean in spectrogram
- add proper documentation and tests to stats module.
- integrate vlines into pypi and version up (maybe good test for ci)
- add ax return for all plot functions, when possible.
- finish plots.twinx and make sure it works
- add test for plots.error_shade.
- Add return object for plots.rect_highlight()
- consider adding directory_exists to helpers
- paired_bar and mean_sem/std need to handle one point better (throws warning)
- Add a proper suptitle fix in aplots it is a pita to add manually/remember:
      f.suptitle(..., fontsize=16)
      f.tight_layout()
      f.subplots_adjust(top=0.9)
- For freqhist should I guarantee it sums to 1 even when bin widths don't match data limits? Probably not. Something to think about though.
- In smoother, consider switching from filtfilt() to sosfiltfilt() for reasons laid out here: https://dsp.stackexchange.com/a/17255/51564
- Convert notch filter to sos?
- For spectral density estimation consider adding multitaper option. Good discussions:
https://github.com/cokelaer/spectrum
https://pyspectrum.readthedocs.io/en/latest/
https://mark-kramer.github.io/Case-Studies-Python/04.html
- add ability to control event colors in spectrogram.
- ind_limits: add checks for data, data_limits, clarify description and docs
- Add numerical tests with random seed set not just graphical eyeball tests.

## To do: longer term
- Add audio playback of signals (see notes in audio_playback_workspace), incorporate this into some tests of filtering, etc.. simpleaudio package is too simple I think.
- autodocs (sphinx?)
- CI/CD with github actions
- consider adding wavelets.
- Add 3d array support for stat functions like mn_sem

## Useful sources
### Smoothing
- https://scipy-cookbook.readthedocs.io/items/FiltFilt.html
- https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.filtfilt.html

### What about wavelets?
I may add wavelets at some point, but it isn't plug-and-play enough for this repo. If you want to get started with wavelets in Python, I recommend http://ataspinar.com/2018/12/21/a-guide-for-using-the-wavelet-transform-in-machine-learning/

### Tolerance values
For a discussion of the difference between relative and absolute tolerance values when testing floats for equality (for instance as used in `helpers.is_symmetric()`) see:
 https://stackoverflow.com/questions/65909842/what-is-rtol-for-in-numpys-allclose-function

 ### Suggestions?
 If there is something you'd like to see, please open an issue.




%prep
%autosetup -n anaties-0.1.4.6

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-anaties -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.4.6-1
- Package Spec generated