1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
|
%global _empty_manifest_terminate_build 0
Name: python-angel-cd
Version: 1.0.3
Release: 1
Summary: Community Discovery algorithm
License: BSD-2-Clause
URL: https://github.com/GiulioRossetti/ANGEL
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/63/71/f09c98a662a385cd0e7c490f7c25962c95c8ca49dd6716dff94c5b517c84/angel_cd-1.0.3.tar.gz
BuildArch: noarch
Requires: python3-future
Requires: python3-tqdm
Requires: python3-igraph
Requires: python3-networkx
Requires: python3-numpy
%description
# ANGEL
[](https://github.com/GiulioRossetti/ANGEL/actions/workflows/test_ubuntu.yml)
[](https://codecov.io/gh/GiulioRossetti/ANGEL)
[](https://pypi.python.org/pypi/angel-cd/)
Community discovery in complex networks is an interesting problem with a number of applications, especially in the knowledge extraction task in social and information networks.
However, many large networks often lack a particular community organization at a global level.
In these cases, traditional graph partitioning algorithms fail to let the latent knowledge embedded in modular structure emerge, because they impose a top-down global view of a network.
We propose here a simple local-first approach to community discovery, namely **Angel**, able to unveil the modular organization of real complex networks.
This is achieved by democratically letting each node vote for the communities it sees surrounding it in its limited view of the global system, i.e. its ego neighborhood, using a label propagation algorithm; finally, the local communities are merged into a global collection.
Moreover, we provide also an evolution of Angel, namely **ArchAngel**, designed to extract community from evolving network topologies.
**Note:** Angel has been integrated within [CDlib](http://cdlib.readthedocs.io) a python package dedicated to community detection algorithms, check it out!
## Installation
You can easily install the updated version of Angel (and Archangel) by using pip:
```bash
pip install angel-cd
```
or using conda
```bash
conda install -c giuliorossetti angel-cd
```
## Implementation details
*Required input format(s)*
Angel:
.ncol edgelist (nodes represented with integer ids).
```
node_id0 node_id1
```
ArchAngel:
Extended .ncol edgelist (nodes represented with integer ids).
```
node_id0 node_id1 snapshot_id
```
# Execution
Angel is written in python and requires the following package to run:
- python 3.x
- python-igraph
- networkx
- tqdm
## Angel
```python
import angel as a
an = a.Angel(filename, threshold=0.4, min_comsize=3, outfile_name="angel_communities.txt")
an.execute()
```
Where:
* filename: edgelist filename
* threshold: merging threshold in [0,1]
* min_com_size: minimum size for communities
* out_filename: desired filename for the output
or alternatively
```python
import angel as a
an = a.Angel(graph=g, threshold=0.4, min_com_size=3, out_filename="communities.txt")
an.execute()
```
Where:
* g: an igraph.Graph object
## ArchAngel
```python
import angel as a
aa = a.ArchAngel(filename, threshold=0.4, match_threshold=0.4, min_com_size=3, outfile_path="./")
aa.execute()
```
Where:
* filename: edgelist filename
* threshold: merging threshold in [0,1]
* match_threshold: cross-time community matching threshold in [0, 1]
* min_com_size: minimum size for communities
* outfile_path: path for algorithm output files
%package -n python3-angel-cd
Summary: Community Discovery algorithm
Provides: python-angel-cd
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-angel-cd
# ANGEL
[](https://github.com/GiulioRossetti/ANGEL/actions/workflows/test_ubuntu.yml)
[](https://codecov.io/gh/GiulioRossetti/ANGEL)
[](https://pypi.python.org/pypi/angel-cd/)
Community discovery in complex networks is an interesting problem with a number of applications, especially in the knowledge extraction task in social and information networks.
However, many large networks often lack a particular community organization at a global level.
In these cases, traditional graph partitioning algorithms fail to let the latent knowledge embedded in modular structure emerge, because they impose a top-down global view of a network.
We propose here a simple local-first approach to community discovery, namely **Angel**, able to unveil the modular organization of real complex networks.
This is achieved by democratically letting each node vote for the communities it sees surrounding it in its limited view of the global system, i.e. its ego neighborhood, using a label propagation algorithm; finally, the local communities are merged into a global collection.
Moreover, we provide also an evolution of Angel, namely **ArchAngel**, designed to extract community from evolving network topologies.
**Note:** Angel has been integrated within [CDlib](http://cdlib.readthedocs.io) a python package dedicated to community detection algorithms, check it out!
## Installation
You can easily install the updated version of Angel (and Archangel) by using pip:
```bash
pip install angel-cd
```
or using conda
```bash
conda install -c giuliorossetti angel-cd
```
## Implementation details
*Required input format(s)*
Angel:
.ncol edgelist (nodes represented with integer ids).
```
node_id0 node_id1
```
ArchAngel:
Extended .ncol edgelist (nodes represented with integer ids).
```
node_id0 node_id1 snapshot_id
```
# Execution
Angel is written in python and requires the following package to run:
- python 3.x
- python-igraph
- networkx
- tqdm
## Angel
```python
import angel as a
an = a.Angel(filename, threshold=0.4, min_comsize=3, outfile_name="angel_communities.txt")
an.execute()
```
Where:
* filename: edgelist filename
* threshold: merging threshold in [0,1]
* min_com_size: minimum size for communities
* out_filename: desired filename for the output
or alternatively
```python
import angel as a
an = a.Angel(graph=g, threshold=0.4, min_com_size=3, out_filename="communities.txt")
an.execute()
```
Where:
* g: an igraph.Graph object
## ArchAngel
```python
import angel as a
aa = a.ArchAngel(filename, threshold=0.4, match_threshold=0.4, min_com_size=3, outfile_path="./")
aa.execute()
```
Where:
* filename: edgelist filename
* threshold: merging threshold in [0,1]
* match_threshold: cross-time community matching threshold in [0, 1]
* min_com_size: minimum size for communities
* outfile_path: path for algorithm output files
%package help
Summary: Development documents and examples for angel-cd
Provides: python3-angel-cd-doc
%description help
# ANGEL
[](https://github.com/GiulioRossetti/ANGEL/actions/workflows/test_ubuntu.yml)
[](https://codecov.io/gh/GiulioRossetti/ANGEL)
[](https://pypi.python.org/pypi/angel-cd/)
Community discovery in complex networks is an interesting problem with a number of applications, especially in the knowledge extraction task in social and information networks.
However, many large networks often lack a particular community organization at a global level.
In these cases, traditional graph partitioning algorithms fail to let the latent knowledge embedded in modular structure emerge, because they impose a top-down global view of a network.
We propose here a simple local-first approach to community discovery, namely **Angel**, able to unveil the modular organization of real complex networks.
This is achieved by democratically letting each node vote for the communities it sees surrounding it in its limited view of the global system, i.e. its ego neighborhood, using a label propagation algorithm; finally, the local communities are merged into a global collection.
Moreover, we provide also an evolution of Angel, namely **ArchAngel**, designed to extract community from evolving network topologies.
**Note:** Angel has been integrated within [CDlib](http://cdlib.readthedocs.io) a python package dedicated to community detection algorithms, check it out!
## Installation
You can easily install the updated version of Angel (and Archangel) by using pip:
```bash
pip install angel-cd
```
or using conda
```bash
conda install -c giuliorossetti angel-cd
```
## Implementation details
*Required input format(s)*
Angel:
.ncol edgelist (nodes represented with integer ids).
```
node_id0 node_id1
```
ArchAngel:
Extended .ncol edgelist (nodes represented with integer ids).
```
node_id0 node_id1 snapshot_id
```
# Execution
Angel is written in python and requires the following package to run:
- python 3.x
- python-igraph
- networkx
- tqdm
## Angel
```python
import angel as a
an = a.Angel(filename, threshold=0.4, min_comsize=3, outfile_name="angel_communities.txt")
an.execute()
```
Where:
* filename: edgelist filename
* threshold: merging threshold in [0,1]
* min_com_size: minimum size for communities
* out_filename: desired filename for the output
or alternatively
```python
import angel as a
an = a.Angel(graph=g, threshold=0.4, min_com_size=3, out_filename="communities.txt")
an.execute()
```
Where:
* g: an igraph.Graph object
## ArchAngel
```python
import angel as a
aa = a.ArchAngel(filename, threshold=0.4, match_threshold=0.4, min_com_size=3, outfile_path="./")
aa.execute()
```
Where:
* filename: edgelist filename
* threshold: merging threshold in [0,1]
* match_threshold: cross-time community matching threshold in [0, 1]
* min_com_size: minimum size for communities
* outfile_path: path for algorithm output files
%prep
%autosetup -n angel-cd-1.0.3
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-angel-cd -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.3-1
- Package Spec generated
|