summaryrefslogtreecommitdiff
path: root/python-appmetrics.spec
blob: 72c009760d10183e861d4ea4cc009b13fa0cbe53 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
%global _empty_manifest_terminate_build 0
Name:		python-AppMetrics
Version:	0.5.0
Release:	1
Summary:	Application metrics collector
License:	Apache 2.0
URL:		https://github.com/avalente/appmetrics
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/ec/67/36b09c8845d2a83f4746626a0ad90907d96e8e215bd0276cd1b87d5c53ad/AppMetrics-0.5.0.tar.gz
BuildArch:	noarch


%description
Install ``AppMetrics`` into your python environment::
    pip install appmetrics
or, if you don't use ``pip``, download and unpack the package an then::
    python setup.py install
Once you have installed ``AppMetrics`` you can access it by the ``metrics`` module::
    >>> from appmetrics import metrics
    >>> histogram = metrics.new_histogram("test")
    >>> histogram.notify(1.0)
    True
    >>> histogram.notify(2.0)
    True
    >>> histogram.notify(3.0)
    True
    >>> histogram.get()
    {'arithmetic_mean': 2.0, 'kind': 'histogram', 'skewness': 0.0, 'harmonic_mean': 1.6363636363636365, 'min': 1.0, 'standard_deviation': 1.0, 'median': 2.0, 'histogram': [(3.0, 3), (5.0, 0)], 'percentile': [(50, 2.0), (75, 2.0), (90, 3.0), (95, 3.0), (99, 3.0), (99.9, 3.0)], 'n': 3, 'max': 3.0, 'variance': 1.0, 'geometric_mean': 1.8171205928321397, 'kurtosis': -2.3333333333333335}
Basically you create a new metric by using one of the ``metrics.new_*`` functions. The metric will be stored into
an internal registry, so you can access it in different places in your application::
    >>> test_histogram = metrics.metric("test")
    >>> test_histogram.notify(4.0)
    True
The ``metrics`` registry is thread-safe, you can safely use it in multi-threaded web servers.
Using the ``with_histogram`` decorator we can time a function::
    >>> import time, random
    >>> @metrics.with_histogram("test")
    >>> my_worker()
    >>> my_worker()
    >>> my_worker()
and let's see the results::
    >>> metrics.get("test")
    {'arithmetic_mean': 0.41326093673706055, 'kind': 'histogram', 'skewness': 0.2739718270714368, 'harmonic_mean': 0.14326954591313346, 'min': 0.0613858699798584, 'standard_deviation': 0.4319169569113129, 'median': 0.2831099033355713, 'histogram': [(1.0613858699798584, 3), (2.0613858699798584, 0)], 'percentile': [(50, 0.2831099033355713), (75, 0.2831099033355713), (90, 0.895287036895752), (95, 0.895287036895752), (99, 0.895287036895752), (99.9, 0.895287036895752)], 'n': 3, 'max': 0.895287036895752, 'variance': 0.18655225766752892, 'geometric_mean': 0.24964828731906127, 'kurtosis': -2.3333333333333335}
It is also possible to time specific sections of the code by using the ``timer`` context manager::
    >>> import time, random
Let's print the metrics data on the screen every 5 seconds::
    >>> from appmetrics import reporter
    >>> def stdout_report(metrics):
    >>> reporter.register(stdout_report, reporter.fixed_interval_scheduler(5))
    '5680173c-0279-46ec-bd88-b318f8058ef4'
    >>> {'test': {'arithmetic_mean': 0.0, 'kind': 'histogram', 'skewness': 0.0, 'harmonic_mean': 0.0, 'min': 0, 'standard_deviation': 0.0, 'median': 0.0, 'histogram': [(0, 0)], 'percentile': [(50, 0.0), (75, 0.0), (90, 0.0), (95, 0.0), (99, 0.0), (99.9, 0.0)], 'n': 0, 'max': 0, 'variance': 0.0, 'geometric_mean': 0.0, 'kurtosis': 0.0}}
    >>> my_worker()
    >>> my_worker()
    >>> {'test': {'arithmetic_mean': 0.5028266906738281, 'kind': 'histogram', 'skewness': 0.0, 'harmonic_mean': 0.2534044030939462, 'min': 0.14868521690368652, 'standard_deviation': 0.50083167520453, 'median': 0.5028266906738281, 'histogram': [(1.1486852169036865, 2), (2.1486852169036865, 0)], 'percentile': [(50, 0.14868521690368652), (75, 0.8569681644439697), (90, 0.8569681644439697), (95, 0.8569681644439697), (99, 0.8569681644439697), (99.9, 0.8569681644439697)], 'n': 2, 'max': 0.8569681644439697, 'variance': 0.2508323668881758, 'geometric_mean': 0.35695727672917066, 'kurtosis': -2.75}}
    >>> reporter.remove('5680173c-0279-46ec-bd88-b318f8058ef4')
    <Timer(Thread-1, started daemon 4555313152)>
Decorators
**********
The ``metrics`` module also provides a couple of decorators: ``with_histogram`` and ``with_meter`` which are
an easy and fast way to use ``AppMetrics``: just decorate your functions/methods and you will have metrics
collected for them. You can decorate multiple functions with the same metric's name, as long as the decorator's
type and parameters are the same, or a ``DuplicateMetricError`` will be raised.
See the documentation for `Histograms`_ and `Meters`_ for more details.

%package -n python3-AppMetrics
Summary:	Application metrics collector
Provides:	python-AppMetrics
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-AppMetrics
Install ``AppMetrics`` into your python environment::
    pip install appmetrics
or, if you don't use ``pip``, download and unpack the package an then::
    python setup.py install
Once you have installed ``AppMetrics`` you can access it by the ``metrics`` module::
    >>> from appmetrics import metrics
    >>> histogram = metrics.new_histogram("test")
    >>> histogram.notify(1.0)
    True
    >>> histogram.notify(2.0)
    True
    >>> histogram.notify(3.0)
    True
    >>> histogram.get()
    {'arithmetic_mean': 2.0, 'kind': 'histogram', 'skewness': 0.0, 'harmonic_mean': 1.6363636363636365, 'min': 1.0, 'standard_deviation': 1.0, 'median': 2.0, 'histogram': [(3.0, 3), (5.0, 0)], 'percentile': [(50, 2.0), (75, 2.0), (90, 3.0), (95, 3.0), (99, 3.0), (99.9, 3.0)], 'n': 3, 'max': 3.0, 'variance': 1.0, 'geometric_mean': 1.8171205928321397, 'kurtosis': -2.3333333333333335}
Basically you create a new metric by using one of the ``metrics.new_*`` functions. The metric will be stored into
an internal registry, so you can access it in different places in your application::
    >>> test_histogram = metrics.metric("test")
    >>> test_histogram.notify(4.0)
    True
The ``metrics`` registry is thread-safe, you can safely use it in multi-threaded web servers.
Using the ``with_histogram`` decorator we can time a function::
    >>> import time, random
    >>> @metrics.with_histogram("test")
    >>> my_worker()
    >>> my_worker()
    >>> my_worker()
and let's see the results::
    >>> metrics.get("test")
    {'arithmetic_mean': 0.41326093673706055, 'kind': 'histogram', 'skewness': 0.2739718270714368, 'harmonic_mean': 0.14326954591313346, 'min': 0.0613858699798584, 'standard_deviation': 0.4319169569113129, 'median': 0.2831099033355713, 'histogram': [(1.0613858699798584, 3), (2.0613858699798584, 0)], 'percentile': [(50, 0.2831099033355713), (75, 0.2831099033355713), (90, 0.895287036895752), (95, 0.895287036895752), (99, 0.895287036895752), (99.9, 0.895287036895752)], 'n': 3, 'max': 0.895287036895752, 'variance': 0.18655225766752892, 'geometric_mean': 0.24964828731906127, 'kurtosis': -2.3333333333333335}
It is also possible to time specific sections of the code by using the ``timer`` context manager::
    >>> import time, random
Let's print the metrics data on the screen every 5 seconds::
    >>> from appmetrics import reporter
    >>> def stdout_report(metrics):
    >>> reporter.register(stdout_report, reporter.fixed_interval_scheduler(5))
    '5680173c-0279-46ec-bd88-b318f8058ef4'
    >>> {'test': {'arithmetic_mean': 0.0, 'kind': 'histogram', 'skewness': 0.0, 'harmonic_mean': 0.0, 'min': 0, 'standard_deviation': 0.0, 'median': 0.0, 'histogram': [(0, 0)], 'percentile': [(50, 0.0), (75, 0.0), (90, 0.0), (95, 0.0), (99, 0.0), (99.9, 0.0)], 'n': 0, 'max': 0, 'variance': 0.0, 'geometric_mean': 0.0, 'kurtosis': 0.0}}
    >>> my_worker()
    >>> my_worker()
    >>> {'test': {'arithmetic_mean': 0.5028266906738281, 'kind': 'histogram', 'skewness': 0.0, 'harmonic_mean': 0.2534044030939462, 'min': 0.14868521690368652, 'standard_deviation': 0.50083167520453, 'median': 0.5028266906738281, 'histogram': [(1.1486852169036865, 2), (2.1486852169036865, 0)], 'percentile': [(50, 0.14868521690368652), (75, 0.8569681644439697), (90, 0.8569681644439697), (95, 0.8569681644439697), (99, 0.8569681644439697), (99.9, 0.8569681644439697)], 'n': 2, 'max': 0.8569681644439697, 'variance': 0.2508323668881758, 'geometric_mean': 0.35695727672917066, 'kurtosis': -2.75}}
    >>> reporter.remove('5680173c-0279-46ec-bd88-b318f8058ef4')
    <Timer(Thread-1, started daemon 4555313152)>
Decorators
**********
The ``metrics`` module also provides a couple of decorators: ``with_histogram`` and ``with_meter`` which are
an easy and fast way to use ``AppMetrics``: just decorate your functions/methods and you will have metrics
collected for them. You can decorate multiple functions with the same metric's name, as long as the decorator's
type and parameters are the same, or a ``DuplicateMetricError`` will be raised.
See the documentation for `Histograms`_ and `Meters`_ for more details.

%package help
Summary:	Development documents and examples for AppMetrics
Provides:	python3-AppMetrics-doc
%description help
Install ``AppMetrics`` into your python environment::
    pip install appmetrics
or, if you don't use ``pip``, download and unpack the package an then::
    python setup.py install
Once you have installed ``AppMetrics`` you can access it by the ``metrics`` module::
    >>> from appmetrics import metrics
    >>> histogram = metrics.new_histogram("test")
    >>> histogram.notify(1.0)
    True
    >>> histogram.notify(2.0)
    True
    >>> histogram.notify(3.0)
    True
    >>> histogram.get()
    {'arithmetic_mean': 2.0, 'kind': 'histogram', 'skewness': 0.0, 'harmonic_mean': 1.6363636363636365, 'min': 1.0, 'standard_deviation': 1.0, 'median': 2.0, 'histogram': [(3.0, 3), (5.0, 0)], 'percentile': [(50, 2.0), (75, 2.0), (90, 3.0), (95, 3.0), (99, 3.0), (99.9, 3.0)], 'n': 3, 'max': 3.0, 'variance': 1.0, 'geometric_mean': 1.8171205928321397, 'kurtosis': -2.3333333333333335}
Basically you create a new metric by using one of the ``metrics.new_*`` functions. The metric will be stored into
an internal registry, so you can access it in different places in your application::
    >>> test_histogram = metrics.metric("test")
    >>> test_histogram.notify(4.0)
    True
The ``metrics`` registry is thread-safe, you can safely use it in multi-threaded web servers.
Using the ``with_histogram`` decorator we can time a function::
    >>> import time, random
    >>> @metrics.with_histogram("test")
    >>> my_worker()
    >>> my_worker()
    >>> my_worker()
and let's see the results::
    >>> metrics.get("test")
    {'arithmetic_mean': 0.41326093673706055, 'kind': 'histogram', 'skewness': 0.2739718270714368, 'harmonic_mean': 0.14326954591313346, 'min': 0.0613858699798584, 'standard_deviation': 0.4319169569113129, 'median': 0.2831099033355713, 'histogram': [(1.0613858699798584, 3), (2.0613858699798584, 0)], 'percentile': [(50, 0.2831099033355713), (75, 0.2831099033355713), (90, 0.895287036895752), (95, 0.895287036895752), (99, 0.895287036895752), (99.9, 0.895287036895752)], 'n': 3, 'max': 0.895287036895752, 'variance': 0.18655225766752892, 'geometric_mean': 0.24964828731906127, 'kurtosis': -2.3333333333333335}
It is also possible to time specific sections of the code by using the ``timer`` context manager::
    >>> import time, random
Let's print the metrics data on the screen every 5 seconds::
    >>> from appmetrics import reporter
    >>> def stdout_report(metrics):
    >>> reporter.register(stdout_report, reporter.fixed_interval_scheduler(5))
    '5680173c-0279-46ec-bd88-b318f8058ef4'
    >>> {'test': {'arithmetic_mean': 0.0, 'kind': 'histogram', 'skewness': 0.0, 'harmonic_mean': 0.0, 'min': 0, 'standard_deviation': 0.0, 'median': 0.0, 'histogram': [(0, 0)], 'percentile': [(50, 0.0), (75, 0.0), (90, 0.0), (95, 0.0), (99, 0.0), (99.9, 0.0)], 'n': 0, 'max': 0, 'variance': 0.0, 'geometric_mean': 0.0, 'kurtosis': 0.0}}
    >>> my_worker()
    >>> my_worker()
    >>> {'test': {'arithmetic_mean': 0.5028266906738281, 'kind': 'histogram', 'skewness': 0.0, 'harmonic_mean': 0.2534044030939462, 'min': 0.14868521690368652, 'standard_deviation': 0.50083167520453, 'median': 0.5028266906738281, 'histogram': [(1.1486852169036865, 2), (2.1486852169036865, 0)], 'percentile': [(50, 0.14868521690368652), (75, 0.8569681644439697), (90, 0.8569681644439697), (95, 0.8569681644439697), (99, 0.8569681644439697), (99.9, 0.8569681644439697)], 'n': 2, 'max': 0.8569681644439697, 'variance': 0.2508323668881758, 'geometric_mean': 0.35695727672917066, 'kurtosis': -2.75}}
    >>> reporter.remove('5680173c-0279-46ec-bd88-b318f8058ef4')
    <Timer(Thread-1, started daemon 4555313152)>
Decorators
**********
The ``metrics`` module also provides a couple of decorators: ``with_histogram`` and ``with_meter`` which are
an easy and fast way to use ``AppMetrics``: just decorate your functions/methods and you will have metrics
collected for them. You can decorate multiple functions with the same metric's name, as long as the decorator's
type and parameters are the same, or a ``DuplicateMetricError`` will be raised.
See the documentation for `Histograms`_ and `Meters`_ for more details.

%prep
%autosetup -n AppMetrics-0.5.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-AppMetrics -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.5.0-1
- Package Spec generated