summaryrefslogtreecommitdiff
path: root/python-apricopt.spec
blob: 491dc14ff8123b94095118dc76cc338806fb0dab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
%global _empty_manifest_terminate_build 0
Name:		python-apricopt
Version:	0.0.2a3
Release:	1
Summary:	A library for simulation-based parameter optimization
License:	GNU General Public License v3 (GPLv3)
URL:		http://mclab.di.uniroma1.it
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/04/39/3609e58dc6f7b024051535511d817c365063bf03954f5f993956cd2a8748/apricopt-0.0.2a3.tar.gz
BuildArch:	noarch

Requires:	python3-attrs
Requires:	python3-chaospy
Requires:	python3-cycler
Requires:	python3-future
Requires:	python3-importlib-metadata
Requires:	python3-kiwisolver
Requires:	python3-libroadrunner
Requires:	python3-matplotlib
Requires:	python3-mpmath
Requires:	python3-numpy
Requires:	python3-Pillow
Requires:	python3-pyparsing
Requires:	python3-copasi
Requires:	python3-dateutil
Requires:	python3-libsbml
Requires:	python3-PyYAML
Requires:	python3-scipy
Requires:	python3-seaborn
Requires:	python3-six
Requires:	python3-sympy
Requires:	python3-tqdm
Requires:	python3-zipp

%description
# Apricopt #

Apricopt is a python framework for simulation-based optimisation of dynamical systems.

It is agnostic with respect to the optimiser and to the simulator.

Apricopt supports the PEtab format for the definition of the optimisation problem. More info about PEtab [here](https://petab.readthedocs.io/en/latest/).

Currently, we support the following simulators:

* COPASI. A state-of-the-art simulator for models of biological processes. We support SBML models (any level and version).
* RoadRunner. A fast state-of-the-art simulator of biological models.

Currently, we support the following black-box optimisers:

* NOMAD. A state-of the art black-box solver that supports surrogate models. More info [here](https://www.gerad.ca/nomad/).
* SciPy.optimize. A python library that implements several algorithms for multivariate optimization. More info [here](https://docs.scipy.org/doc/scipy/reference/optimize.html).
* PySwarms. A python library that implements various forms of the Particle Swarm Optimization algorithm. More info [here](https://pyswarms.readthedocs.io/en/latest/).

Currently, we support the following white-box optimisers:

* COPASI. It supports several optimisation algorithms for biological processes. More info [here](http://copasi.org/Support/User_Manual/Methods/Optimization_Methods/)

### Info ###

WIP

* Version 0.0.2a3


### Who do I talk to? ###

* Marco Esposito (author) - esposito@di.uniroma1.it
* Leonardo Picchiami (author) - picchiami.1643888@studenti.uniroma1.it


Copyright (C) 2020-2021  Marco Esposito, Leonardo Picchiami.

Distributed under GNU General Public License v3.




%package -n python3-apricopt
Summary:	A library for simulation-based parameter optimization
Provides:	python-apricopt
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-apricopt
# Apricopt #

Apricopt is a python framework for simulation-based optimisation of dynamical systems.

It is agnostic with respect to the optimiser and to the simulator.

Apricopt supports the PEtab format for the definition of the optimisation problem. More info about PEtab [here](https://petab.readthedocs.io/en/latest/).

Currently, we support the following simulators:

* COPASI. A state-of-the-art simulator for models of biological processes. We support SBML models (any level and version).
* RoadRunner. A fast state-of-the-art simulator of biological models.

Currently, we support the following black-box optimisers:

* NOMAD. A state-of the art black-box solver that supports surrogate models. More info [here](https://www.gerad.ca/nomad/).
* SciPy.optimize. A python library that implements several algorithms for multivariate optimization. More info [here](https://docs.scipy.org/doc/scipy/reference/optimize.html).
* PySwarms. A python library that implements various forms of the Particle Swarm Optimization algorithm. More info [here](https://pyswarms.readthedocs.io/en/latest/).

Currently, we support the following white-box optimisers:

* COPASI. It supports several optimisation algorithms for biological processes. More info [here](http://copasi.org/Support/User_Manual/Methods/Optimization_Methods/)

### Info ###

WIP

* Version 0.0.2a3


### Who do I talk to? ###

* Marco Esposito (author) - esposito@di.uniroma1.it
* Leonardo Picchiami (author) - picchiami.1643888@studenti.uniroma1.it


Copyright (C) 2020-2021  Marco Esposito, Leonardo Picchiami.

Distributed under GNU General Public License v3.




%package help
Summary:	Development documents and examples for apricopt
Provides:	python3-apricopt-doc
%description help
# Apricopt #

Apricopt is a python framework for simulation-based optimisation of dynamical systems.

It is agnostic with respect to the optimiser and to the simulator.

Apricopt supports the PEtab format for the definition of the optimisation problem. More info about PEtab [here](https://petab.readthedocs.io/en/latest/).

Currently, we support the following simulators:

* COPASI. A state-of-the-art simulator for models of biological processes. We support SBML models (any level and version).
* RoadRunner. A fast state-of-the-art simulator of biological models.

Currently, we support the following black-box optimisers:

* NOMAD. A state-of the art black-box solver that supports surrogate models. More info [here](https://www.gerad.ca/nomad/).
* SciPy.optimize. A python library that implements several algorithms for multivariate optimization. More info [here](https://docs.scipy.org/doc/scipy/reference/optimize.html).
* PySwarms. A python library that implements various forms of the Particle Swarm Optimization algorithm. More info [here](https://pyswarms.readthedocs.io/en/latest/).

Currently, we support the following white-box optimisers:

* COPASI. It supports several optimisation algorithms for biological processes. More info [here](http://copasi.org/Support/User_Manual/Methods/Optimization_Methods/)

### Info ###

WIP

* Version 0.0.2a3


### Who do I talk to? ###

* Marco Esposito (author) - esposito@di.uniroma1.it
* Leonardo Picchiami (author) - picchiami.1643888@studenti.uniroma1.it


Copyright (C) 2020-2021  Marco Esposito, Leonardo Picchiami.

Distributed under GNU General Public License v3.




%prep
%autosetup -n apricopt-0.0.2a3

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-apricopt -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.2a3-1
- Package Spec generated