diff options
author | CoprDistGit <infra@openeuler.org> | 2023-05-17 03:42:26 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-05-17 03:42:26 +0000 |
commit | 6ac333ec92653448922cd89e9272a5d6f6c4296b (patch) | |
tree | f6db7c9cec11fe908642b51fcb854ec1d9ff85a2 | |
parent | 0266329b5ed221819fce0ed9a85c182813fd9482 (diff) |
automatic import of python-aslpaw
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-aslpaw.spec | 219 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 221 insertions, 0 deletions
@@ -0,0 +1 @@ +/ASLPAw-2.2.0.tar.gz diff --git a/python-aslpaw.spec b/python-aslpaw.spec new file mode 100644 index 0000000..13752e5 --- /dev/null +++ b/python-aslpaw.spec @@ -0,0 +1,219 @@ +%global _empty_manifest_terminate_build 0 +Name: python-ASLPAw +Version: 2.2.0 +Release: 1 +Summary: Adaptive overlapping community discovery algorithm package in python. +License: GNU Affero General Public License v3 +URL: https://github.com/fsssosei/ASLPAw +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/aa/0b/83d1289c05d7c299d556c527d9ab7455db1a016a84510063bc5b49329c38/ASLPAw-2.2.0.tar.gz +BuildArch: noarch + +Requires: python3-networkx +Requires: python3-multivalued-dict +Requires: python3-shuffle-graph +Requires: python3-count-dict +Requires: python3-similarity-index-of-label-graph +Requires: python3-scikit-learn + +%description +# ASLPAw + + + + +[](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/build-status/master) +[](https://scrutinizer-ci.com/code-intelligence) +[](https://lgtm.com/projects/g/fsssosei/ASLPAw/context:python) +[](https://www.codacy.com/manual/fsssosei/ASLPAw?utm_source=github.com&utm_medium=referral&utm_content=fsssosei/ASLPAw&utm_campaign=Badge_Grade) +[](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/?branch=master) + + + + +*Adaptive overlapping community discovery algorithm package in python.* + +ASLPAw can be used for disjoint and overlapping community detection and works on weighted/unweighted and directed/undirected networks. +ASLPAw is adaptive with virtually no configuration parameters. + +This is an easy-to-understand reference implementation that is not optimized for efficiency, but is robust. The underlying NetworkX package is inherently inefficient and unsuitable for use on large networks. +The next release will extend support for multiple productivity packages, such as SNAP, graph-tool, and igraph. + +## Installation + +Installation can be done through pip. You must have python version >= 3.8 + + pip install ASLPAw + +## Usage + +The statement to import the package: + + from ASLPAw_package import ASLPAw + +Example: + + >>> from networkx.generators.community import relaxed_caveman_graph + + >>> #Set seed to make the results repeatable. + >>> data_graph = relaxed_caveman_graph(3, 6, 0.22, seed = 65535) + >>> ASLPAw(data_graph, seed=65535).adj + AdjacencyView({0: {2: {'weight': 0.9}}, 2: {2: {'weight': 0.9333333333333333}}, 1: {6: {'weight': 0.6}}, 6: {6: {'weight': 1.0}}, 3: {2: {'weight': 0.6}}, 4: {2: {'weight': 0.8666666666666667}}, 5: {2: {'weight': 0.9333333333333333}}, 7: {6: {'weight': 1.0}}, 8: {6: {'weight': 0.9666666666666667}}, 9: {6: {'weight': 0.9333333333333333}}, 10: {6: {'weight': 0.8666666666666667}}, 11: {6: {'weight': 0.9666666666666667}}, 12: {12: {'weight': 1.0333333333333334}}, 13: {12: {'weight': 0.9666666666666667}}, 14: {12: {'weight': 1.0}}, 15: {12: {'weight': 1.0}}, 16: {12: {'weight': 1.0}}, 17: {12: {'weight': 1.0}}}) + + >>> data_graph = relaxed_caveman_graph(3, 6, 0.39, seed = 65535) + >>> ASLPAw(data_graph, seed=65535).adj + AdjacencyView({0: {1: {'weight': 0.9333333333333333}}, 1: {1: {'weight': 1.0}}, 2: {1: {'weight': 1.0}}, 3: {1: {'weight': 0.9666666666666667}}, 4: {1: {'weight': 1.0}}, 5: {1: {'weight': 0.9666666666666667}}, 6: {}, 7: {7: {'weight': 0.7666666666666667}}, 8: {}, 9: {13: {'weight': 0.4}, 6: {'weight': 0.26666666666666666}}, 13: {13: {'weight': 0.6333333333333333}}, 10: {1: {'weight': 0.5666666666666667}}, 11: {7: {'weight': 0.6333333333333333}}, 12: {12: {'weight': 0.4666666666666667}, 13: {'weight': 0.4}}, 14: {13: {'weight': 0.5666666666666667}}, 15: {13: {'weight': 0.5333333333333333}, 12: {'weight': 0.3333333333333333}}, 16: {13: {'weight': 0.43333333333333335}}, 17: {13: {'weight': 0.43333333333333335}, 12: {'weight': 0.4}}}) + + + +%package -n python3-ASLPAw +Summary: Adaptive overlapping community discovery algorithm package in python. +Provides: python-ASLPAw +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-ASLPAw +# ASLPAw + + + + +[](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/build-status/master) +[](https://scrutinizer-ci.com/code-intelligence) +[](https://lgtm.com/projects/g/fsssosei/ASLPAw/context:python) +[](https://www.codacy.com/manual/fsssosei/ASLPAw?utm_source=github.com&utm_medium=referral&utm_content=fsssosei/ASLPAw&utm_campaign=Badge_Grade) +[](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/?branch=master) + + + + +*Adaptive overlapping community discovery algorithm package in python.* + +ASLPAw can be used for disjoint and overlapping community detection and works on weighted/unweighted and directed/undirected networks. +ASLPAw is adaptive with virtually no configuration parameters. + +This is an easy-to-understand reference implementation that is not optimized for efficiency, but is robust. The underlying NetworkX package is inherently inefficient and unsuitable for use on large networks. +The next release will extend support for multiple productivity packages, such as SNAP, graph-tool, and igraph. + +## Installation + +Installation can be done through pip. You must have python version >= 3.8 + + pip install ASLPAw + +## Usage + +The statement to import the package: + + from ASLPAw_package import ASLPAw + +Example: + + >>> from networkx.generators.community import relaxed_caveman_graph + + >>> #Set seed to make the results repeatable. + >>> data_graph = relaxed_caveman_graph(3, 6, 0.22, seed = 65535) + >>> ASLPAw(data_graph, seed=65535).adj + AdjacencyView({0: {2: {'weight': 0.9}}, 2: {2: {'weight': 0.9333333333333333}}, 1: {6: {'weight': 0.6}}, 6: {6: {'weight': 1.0}}, 3: {2: {'weight': 0.6}}, 4: {2: {'weight': 0.8666666666666667}}, 5: {2: {'weight': 0.9333333333333333}}, 7: {6: {'weight': 1.0}}, 8: {6: {'weight': 0.9666666666666667}}, 9: {6: {'weight': 0.9333333333333333}}, 10: {6: {'weight': 0.8666666666666667}}, 11: {6: {'weight': 0.9666666666666667}}, 12: {12: {'weight': 1.0333333333333334}}, 13: {12: {'weight': 0.9666666666666667}}, 14: {12: {'weight': 1.0}}, 15: {12: {'weight': 1.0}}, 16: {12: {'weight': 1.0}}, 17: {12: {'weight': 1.0}}}) + + >>> data_graph = relaxed_caveman_graph(3, 6, 0.39, seed = 65535) + >>> ASLPAw(data_graph, seed=65535).adj + AdjacencyView({0: {1: {'weight': 0.9333333333333333}}, 1: {1: {'weight': 1.0}}, 2: {1: {'weight': 1.0}}, 3: {1: {'weight': 0.9666666666666667}}, 4: {1: {'weight': 1.0}}, 5: {1: {'weight': 0.9666666666666667}}, 6: {}, 7: {7: {'weight': 0.7666666666666667}}, 8: {}, 9: {13: {'weight': 0.4}, 6: {'weight': 0.26666666666666666}}, 13: {13: {'weight': 0.6333333333333333}}, 10: {1: {'weight': 0.5666666666666667}}, 11: {7: {'weight': 0.6333333333333333}}, 12: {12: {'weight': 0.4666666666666667}, 13: {'weight': 0.4}}, 14: {13: {'weight': 0.5666666666666667}}, 15: {13: {'weight': 0.5333333333333333}, 12: {'weight': 0.3333333333333333}}, 16: {13: {'weight': 0.43333333333333335}}, 17: {13: {'weight': 0.43333333333333335}, 12: {'weight': 0.4}}}) + + + +%package help +Summary: Development documents and examples for ASLPAw +Provides: python3-ASLPAw-doc +%description help +# ASLPAw + + + + +[](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/build-status/master) +[](https://scrutinizer-ci.com/code-intelligence) +[](https://lgtm.com/projects/g/fsssosei/ASLPAw/context:python) +[](https://www.codacy.com/manual/fsssosei/ASLPAw?utm_source=github.com&utm_medium=referral&utm_content=fsssosei/ASLPAw&utm_campaign=Badge_Grade) +[](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/?branch=master) + + + + +*Adaptive overlapping community discovery algorithm package in python.* + +ASLPAw can be used for disjoint and overlapping community detection and works on weighted/unweighted and directed/undirected networks. +ASLPAw is adaptive with virtually no configuration parameters. + +This is an easy-to-understand reference implementation that is not optimized for efficiency, but is robust. The underlying NetworkX package is inherently inefficient and unsuitable for use on large networks. +The next release will extend support for multiple productivity packages, such as SNAP, graph-tool, and igraph. + +## Installation + +Installation can be done through pip. You must have python version >= 3.8 + + pip install ASLPAw + +## Usage + +The statement to import the package: + + from ASLPAw_package import ASLPAw + +Example: + + >>> from networkx.generators.community import relaxed_caveman_graph + + >>> #Set seed to make the results repeatable. + >>> data_graph = relaxed_caveman_graph(3, 6, 0.22, seed = 65535) + >>> ASLPAw(data_graph, seed=65535).adj + AdjacencyView({0: {2: {'weight': 0.9}}, 2: {2: {'weight': 0.9333333333333333}}, 1: {6: {'weight': 0.6}}, 6: {6: {'weight': 1.0}}, 3: {2: {'weight': 0.6}}, 4: {2: {'weight': 0.8666666666666667}}, 5: {2: {'weight': 0.9333333333333333}}, 7: {6: {'weight': 1.0}}, 8: {6: {'weight': 0.9666666666666667}}, 9: {6: {'weight': 0.9333333333333333}}, 10: {6: {'weight': 0.8666666666666667}}, 11: {6: {'weight': 0.9666666666666667}}, 12: {12: {'weight': 1.0333333333333334}}, 13: {12: {'weight': 0.9666666666666667}}, 14: {12: {'weight': 1.0}}, 15: {12: {'weight': 1.0}}, 16: {12: {'weight': 1.0}}, 17: {12: {'weight': 1.0}}}) + + >>> data_graph = relaxed_caveman_graph(3, 6, 0.39, seed = 65535) + >>> ASLPAw(data_graph, seed=65535).adj + AdjacencyView({0: {1: {'weight': 0.9333333333333333}}, 1: {1: {'weight': 1.0}}, 2: {1: {'weight': 1.0}}, 3: {1: {'weight': 0.9666666666666667}}, 4: {1: {'weight': 1.0}}, 5: {1: {'weight': 0.9666666666666667}}, 6: {}, 7: {7: {'weight': 0.7666666666666667}}, 8: {}, 9: {13: {'weight': 0.4}, 6: {'weight': 0.26666666666666666}}, 13: {13: {'weight': 0.6333333333333333}}, 10: {1: {'weight': 0.5666666666666667}}, 11: {7: {'weight': 0.6333333333333333}}, 12: {12: {'weight': 0.4666666666666667}, 13: {'weight': 0.4}}, 14: {13: {'weight': 0.5666666666666667}}, 15: {13: {'weight': 0.5333333333333333}, 12: {'weight': 0.3333333333333333}}, 16: {13: {'weight': 0.43333333333333335}}, 17: {13: {'weight': 0.43333333333333335}, 12: {'weight': 0.4}}}) + + + +%prep +%autosetup -n ASLPAw-2.2.0 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-ASLPAw -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed May 17 2023 Python_Bot <Python_Bot@openeuler.org> - 2.2.0-1 +- Package Spec generated @@ -0,0 +1 @@ +cdd5d170cbe330819d6bfdde7fccb5cf ASLPAw-2.2.0.tar.gz |