diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-05-05 10:38:25 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-05-05 10:38:25 +0000 |
| commit | 1e530c1085d320da11ad2e60e37457846293d9bb (patch) | |
| tree | 3470d000beccbc64aa0023ba10766547f023fff0 | |
| parent | 9134cc50c236fd4d097f754c586109e4e4c162b4 (diff) | |
automatic import of python-asteroidopeneuler20.03
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-asteroid.spec | 585 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 587 insertions, 0 deletions
@@ -0,0 +1 @@ +/asteroid-0.6.0.tar.gz diff --git a/python-asteroid.spec b/python-asteroid.spec new file mode 100644 index 0000000..47b8b3f --- /dev/null +++ b/python-asteroid.spec @@ -0,0 +1,585 @@ +%global _empty_manifest_terminate_build 0 +Name: python-asteroid +Version: 0.6.0 +Release: 1 +Summary: PyTorch-based audio source separation toolkit +License: MIT +URL: https://github.com/asteroid-team/asteroid +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/7b/1b/0b679ae8c58038d06f4d48eb2391f53205c89a5063941d0cdc4f12c79cd0/asteroid-0.6.0.tar.gz +BuildArch: noarch + +Requires: python3-numpy +Requires: python3-scipy +Requires: python3-torch +Requires: python3-asteroid-filterbanks +Requires: python3-SoundFile +Requires: python3-huggingface-hub +Requires: python3-PyYAML +Requires: python3-pandas +Requires: python3-pytorch-lightning +Requires: python3-torchaudio +Requires: python3-pb-bss-eval +Requires: python3-torch-stoi +Requires: python3-torch-optimizer +Requires: python3-julius +Requires: python3-torchmetrics + +%description +Asteroid is a Pytorch-based audio source separation toolkit +that enables fast experimentation on common datasets. +It comes with a source code that supports a large range +of datasets and architectures, and a set of + recipes to reproduce some important papers. +### You use Asteroid or you want to? +Please, if you have found a bug, [open an issue][issue], +if you solved it, [open a pull request][pr]! +Same goes for new features, tell us what you want or help us building it! +Don't hesitate to [join the slack][slack-invite] +and ask questions / suggest new features there as well! +Asteroid is intended to be a __community-based project__ +so hop on and help us! +## Contents +- [Installation](#installation) +- [Tutorials](#tutorials) +- [Running a recipe](#running-a-recipe) +- [Available recipes](#available-recipes) +- [Supported datasets](#supported-datasets) +- [Pretrained models](#pretrained-models) +- [Calls for contributions](#contributing) +- [Citing us](#citing) +## Installation +([↑up to contents](#contents)) +To install Asteroid, clone the repo and install it using +conda, pip or python : +```bash +# First clone and enter the repo +git clone https://github.com/asteroid-team/asteroid +cd asteroid +``` +- With `pip` +```bash +# Install with pip in editable mode +pip install -e . +# Or, install with python in dev mode +# python setup.py develop +``` +- With conda (if you don't already have conda, see [here][miniconda].) +```bash +conda env create -f environment.yml +conda activate asteroid +``` +- Asteroid is also on PyPI, you can install the latest release with +```bash +pip install asteroid +``` +## Tutorials +([↑up to contents](#contents)) +Here is a list of notebooks showing example usage of Asteroid's features. +- [Getting started with Asteroid](./notebooks/00_GettingStarted.ipynb) +- [Introduction and Overview](./notebooks/01_APIOverview.ipynb) +- [Filterbank API](./notebooks/02_Filterbank.ipynb) +- [Permutation invariant training wrapper `PITLossWrapper`](./notebooks/03_PITLossWrapper.ipynb) +- [Process large wav files](./notebooks/04_ProcessLargeAudioFiles.ipynb) +## Running a recipe +([↑up to contents](#contents)) +Running the recipes requires additional packages in most cases, +we recommend running : +```bash +# from asteroid/ +pip install -r requirements.txt +``` +Then choose the recipe you want to run and run it! +```bash +cd egs/wham/ConvTasNet +. ./run.sh +``` +More information in [egs/README.md](./egs). +## Available recipes +([↑up to contents](#contents)) +* [x] [ConvTasnet](./egs/wham/ConvTasNet) ([Luo et al.](https://arxiv.org/abs/1809.07454)) +* [x] [Tasnet](./egs/whamr/TasNet) ([Luo et al.](https://arxiv.org/abs/1711.00541)) +* [x] [Deep clustering](./egs/wsj0-mix/DeepClustering) ([Hershey et al.](https://arxiv.org/abs/1508.04306) and [Isik et al.](https://arxiv.org/abs/1607.02173)) +* [x] [Chimera ++](./egs/wsj0-mix/DeepClustering) ([Luo et al.](https://arxiv.org/abs/1611.06265) and [Wang et al.](https://ieeexplore.ieee.org/document/8462507)) +* [x] [DualPathRNN](./egs/wham/DPRNN) ([Luo et al.](https://arxiv.org/abs/1910.06379)) +* [x] [Two step learning](./egs/wham/TwoStep)([Tzinis et al.](https://arxiv.org/abs/1910.09804)) +* [x] [SudoRMRFNet](./asteroid/models/sudormrf.py) ([Tzinis et al.](https://arxiv.org/abs/2007.06833)) +* [x] [DPTNet](./asteroid/models/dptnet.py) ([Chen et al.](https://arxiv.org/abs/2007.13975)) +* [x] [DCCRNet](./asteroid/models/dccrnet.py) ([Hu et al.](https://arxiv.org/abs/2008.00264)) +* [x] [DCUNet](./asteroid/models/dcunet.py) ([Choi et al.](https://arxiv.org/abs/1903.03107)) +* [x] [CrossNet-Open-Unmix](./asteroid/models/x_umx.py) ([Sawata et al.](https://arxiv.org/abs/2010.04228)) +* [ ] Open-Unmix (coming) ([Stöter et al.](https://sigsep.github.io/open-unmix/)) +* [ ] Wavesplit (coming) ([Zeghidour et al.](https://arxiv.org/abs/2002.08933)) +## Supported datasets +([↑up to contents](#contents)) +* [x] [WSJ0-2mix](./egs/wsj0-mix) / WSJ03mix ([Hershey et al.](https://arxiv.org/abs/1508.04306)) +* [x] [WHAM](./egs/wham) ([Wichern et al.](https://arxiv.org/abs/1907.01160)) +* [x] [WHAMR](./egs/whamr) ([Maciejewski et al.](https://arxiv.org/abs/1910.10279)) +* [x] [LibriMix](./egs/librimix) ([Cosentino et al.](https://arxiv.org/abs/2005.11262)) +* [x] [Microsoft DNS Challenge](./egs/dns_challenge) ([Chandan et al.](https://arxiv.org/abs/2001.08662)) +* [x] [SMS_WSJ](./egs/sms_wsj) ([Drude et al.](https://arxiv.org/abs/1910.13934)) +* [x] [MUSDB18](./asteroid/data/musdb18_dataset.py) ([Raffi et al.](https://hal.inria.fr/hal-02190845)) +* [x] [FUSS](./asteroid/data/fuss_dataset.py) ([Wisdom et al.](https://zenodo.org/record/3694384#.XmUAM-lw3g4)) +* [x] [AVSpeech](./asteroid/data/avspeech_dataset.py) ([Ephrat et al.](https://arxiv.org/abs/1804.03619)) +* [x] [Kinect-WSJ](./asteroid/data/kinect_wsj.py) ([Sivasankaran et al.](https://github.com/sunits/Reverberated_WSJ_2MIX)) +## Pretrained models +([↑up to contents](#contents)) +See [here](./docs/source/readmes/pretrained_models.md) +## Contributing +([↑up to contents](#contents)) +We are always looking to expand our coverage of the source separation +and speech enhancement research, the following is a list of +things we're missing. +You want to contribute? This is a great place to start! +* Wavesplit ([Zeghidour and Grangier](https://arxiv.org/abs/2002.08933)) +* FurcaNeXt ([Shi et al.](https://arxiv.org/abs/1902.04891)) +* DeepCASA ([Liu and Want](https://arxiv.org/abs/1904.11148)) +* VCTK Test sets from [Kadioglu et al.](https://arxiv.org/pdf/2002.08688.pdf) +* Interrupted and cascaded PIT ([Yang et al.](https://arxiv.org/abs/1910.12706)) +* ~Consistency contraints ([Wisdom et al.](https://ieeexplore.ieee.org/abstract/document/8682783))~ +* ~Backpropagable STOI and PESQ.~ +* Parametrized filterbanks from [Tukuljac et al.](https://openreview.net/forum?id=HyewT1BKvr) +* ~End-to-End MISI ([Wang et al.](https://arxiv.org/abs/1804.10204))~ +Don't forget to read our [contributing guidelines](./CONTRIBUTING.md). +You can also open an issue or make a PR to add something we missed in this list. +## TensorBoard visualization +The default logger is TensorBoard in all the recipes. From the recipe folder, +you can run the following to visualize the logs of all your runs. You can +also compare different systems on the same dataset by running a similar command +from the dataset directiories. +```bash +# Launch tensorboard (default port is 6006) +tensorboard --logdir exp/ --port tf_port +``` +If your launching tensorboard remotely, you should open an ssh tunnel +```bash +# Open port-forwarding connection. Add -Nf option not to open remote. +ssh -L local_port:localhost:tf_port user@ip +``` +Then open `http://localhost:local_port/`. If both ports are the same, you can +click on the tensorboard URL given on the remote, it's just more practical. +## Guiding principles +([↑up to contents](#contents)) +* __Modularity.__ Building blocks are thought and designed to be seamlessly +plugged together. Filterbanks, encoders, maskers, decoders and losses are +all common building blocks that can be combined in a +flexible way to create new systems. +* __Extensibility.__ Extending Asteroid with new features is simple. +Add a new filterbank, separator architecture, dataset or even recipe very +easily. +* __Reproducibility.__ Recipes provide an easy way to reproduce +results with data preparation, system design, training and evaluation in a +single script. This is an essential tool for the community! +## Citing Asteroid +([↑up to contents](#contents)) +If you loved using Asteroid and you want to cite us, use this : +```BibTex +@inproceedings{Pariente2020Asteroid, + title={Asteroid: the {PyTorch}-based audio source separation toolkit for researchers}, + author={Manuel Pariente and Samuele Cornell and Joris Cosentino and Sunit Sivasankaran and + Efthymios Tzinis and Jens Heitkaemper and Michel Olvera and Fabian-Robert Stöter and + Mathieu Hu and Juan M. Martín-Doñas and David Ditter and Ariel Frank and Antoine Deleforge + and Emmanuel Vincent}, + year={2020}, + booktitle={Proc. Interspeech}, +} +``` +[comment]: <> (Badge) +[miniconda]: https://conda.io/miniconda.html +[codecov-badge]: https://codecov.io/gh/asteroid-team/asteroid/branch/master/graph/badge.svg +[codecov]: https://codecov.io/gh/asteroid-team/asteroid +[slack-badge]: https://img.shields.io/badge/slack-chat-green.svg?logo=slack +[slack-invite]: https://join.slack.com/t/asteroid-dev/shared_invite/zt-cn9y85t3-QNHXKD1Et7qoyzu1Ji5bcA +[comment]: <> (Others) +[issue]: https://github.com/asteroid-team/asteroid/issues/new +[pr]: https://github.com/asteroid-team/asteroid/compare + +%package -n python3-asteroid +Summary: PyTorch-based audio source separation toolkit +Provides: python-asteroid +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-asteroid +Asteroid is a Pytorch-based audio source separation toolkit +that enables fast experimentation on common datasets. +It comes with a source code that supports a large range +of datasets and architectures, and a set of + recipes to reproduce some important papers. +### You use Asteroid or you want to? +Please, if you have found a bug, [open an issue][issue], +if you solved it, [open a pull request][pr]! +Same goes for new features, tell us what you want or help us building it! +Don't hesitate to [join the slack][slack-invite] +and ask questions / suggest new features there as well! +Asteroid is intended to be a __community-based project__ +so hop on and help us! +## Contents +- [Installation](#installation) +- [Tutorials](#tutorials) +- [Running a recipe](#running-a-recipe) +- [Available recipes](#available-recipes) +- [Supported datasets](#supported-datasets) +- [Pretrained models](#pretrained-models) +- [Calls for contributions](#contributing) +- [Citing us](#citing) +## Installation +([↑up to contents](#contents)) +To install Asteroid, clone the repo and install it using +conda, pip or python : +```bash +# First clone and enter the repo +git clone https://github.com/asteroid-team/asteroid +cd asteroid +``` +- With `pip` +```bash +# Install with pip in editable mode +pip install -e . +# Or, install with python in dev mode +# python setup.py develop +``` +- With conda (if you don't already have conda, see [here][miniconda].) +```bash +conda env create -f environment.yml +conda activate asteroid +``` +- Asteroid is also on PyPI, you can install the latest release with +```bash +pip install asteroid +``` +## Tutorials +([↑up to contents](#contents)) +Here is a list of notebooks showing example usage of Asteroid's features. +- [Getting started with Asteroid](./notebooks/00_GettingStarted.ipynb) +- [Introduction and Overview](./notebooks/01_APIOverview.ipynb) +- [Filterbank API](./notebooks/02_Filterbank.ipynb) +- [Permutation invariant training wrapper `PITLossWrapper`](./notebooks/03_PITLossWrapper.ipynb) +- [Process large wav files](./notebooks/04_ProcessLargeAudioFiles.ipynb) +## Running a recipe +([↑up to contents](#contents)) +Running the recipes requires additional packages in most cases, +we recommend running : +```bash +# from asteroid/ +pip install -r requirements.txt +``` +Then choose the recipe you want to run and run it! +```bash +cd egs/wham/ConvTasNet +. ./run.sh +``` +More information in [egs/README.md](./egs). +## Available recipes +([↑up to contents](#contents)) +* [x] [ConvTasnet](./egs/wham/ConvTasNet) ([Luo et al.](https://arxiv.org/abs/1809.07454)) +* [x] [Tasnet](./egs/whamr/TasNet) ([Luo et al.](https://arxiv.org/abs/1711.00541)) +* [x] [Deep clustering](./egs/wsj0-mix/DeepClustering) ([Hershey et al.](https://arxiv.org/abs/1508.04306) and [Isik et al.](https://arxiv.org/abs/1607.02173)) +* [x] [Chimera ++](./egs/wsj0-mix/DeepClustering) ([Luo et al.](https://arxiv.org/abs/1611.06265) and [Wang et al.](https://ieeexplore.ieee.org/document/8462507)) +* [x] [DualPathRNN](./egs/wham/DPRNN) ([Luo et al.](https://arxiv.org/abs/1910.06379)) +* [x] [Two step learning](./egs/wham/TwoStep)([Tzinis et al.](https://arxiv.org/abs/1910.09804)) +* [x] [SudoRMRFNet](./asteroid/models/sudormrf.py) ([Tzinis et al.](https://arxiv.org/abs/2007.06833)) +* [x] [DPTNet](./asteroid/models/dptnet.py) ([Chen et al.](https://arxiv.org/abs/2007.13975)) +* [x] [DCCRNet](./asteroid/models/dccrnet.py) ([Hu et al.](https://arxiv.org/abs/2008.00264)) +* [x] [DCUNet](./asteroid/models/dcunet.py) ([Choi et al.](https://arxiv.org/abs/1903.03107)) +* [x] [CrossNet-Open-Unmix](./asteroid/models/x_umx.py) ([Sawata et al.](https://arxiv.org/abs/2010.04228)) +* [ ] Open-Unmix (coming) ([Stöter et al.](https://sigsep.github.io/open-unmix/)) +* [ ] Wavesplit (coming) ([Zeghidour et al.](https://arxiv.org/abs/2002.08933)) +## Supported datasets +([↑up to contents](#contents)) +* [x] [WSJ0-2mix](./egs/wsj0-mix) / WSJ03mix ([Hershey et al.](https://arxiv.org/abs/1508.04306)) +* [x] [WHAM](./egs/wham) ([Wichern et al.](https://arxiv.org/abs/1907.01160)) +* [x] [WHAMR](./egs/whamr) ([Maciejewski et al.](https://arxiv.org/abs/1910.10279)) +* [x] [LibriMix](./egs/librimix) ([Cosentino et al.](https://arxiv.org/abs/2005.11262)) +* [x] [Microsoft DNS Challenge](./egs/dns_challenge) ([Chandan et al.](https://arxiv.org/abs/2001.08662)) +* [x] [SMS_WSJ](./egs/sms_wsj) ([Drude et al.](https://arxiv.org/abs/1910.13934)) +* [x] [MUSDB18](./asteroid/data/musdb18_dataset.py) ([Raffi et al.](https://hal.inria.fr/hal-02190845)) +* [x] [FUSS](./asteroid/data/fuss_dataset.py) ([Wisdom et al.](https://zenodo.org/record/3694384#.XmUAM-lw3g4)) +* [x] [AVSpeech](./asteroid/data/avspeech_dataset.py) ([Ephrat et al.](https://arxiv.org/abs/1804.03619)) +* [x] [Kinect-WSJ](./asteroid/data/kinect_wsj.py) ([Sivasankaran et al.](https://github.com/sunits/Reverberated_WSJ_2MIX)) +## Pretrained models +([↑up to contents](#contents)) +See [here](./docs/source/readmes/pretrained_models.md) +## Contributing +([↑up to contents](#contents)) +We are always looking to expand our coverage of the source separation +and speech enhancement research, the following is a list of +things we're missing. +You want to contribute? This is a great place to start! +* Wavesplit ([Zeghidour and Grangier](https://arxiv.org/abs/2002.08933)) +* FurcaNeXt ([Shi et al.](https://arxiv.org/abs/1902.04891)) +* DeepCASA ([Liu and Want](https://arxiv.org/abs/1904.11148)) +* VCTK Test sets from [Kadioglu et al.](https://arxiv.org/pdf/2002.08688.pdf) +* Interrupted and cascaded PIT ([Yang et al.](https://arxiv.org/abs/1910.12706)) +* ~Consistency contraints ([Wisdom et al.](https://ieeexplore.ieee.org/abstract/document/8682783))~ +* ~Backpropagable STOI and PESQ.~ +* Parametrized filterbanks from [Tukuljac et al.](https://openreview.net/forum?id=HyewT1BKvr) +* ~End-to-End MISI ([Wang et al.](https://arxiv.org/abs/1804.10204))~ +Don't forget to read our [contributing guidelines](./CONTRIBUTING.md). +You can also open an issue or make a PR to add something we missed in this list. +## TensorBoard visualization +The default logger is TensorBoard in all the recipes. From the recipe folder, +you can run the following to visualize the logs of all your runs. You can +also compare different systems on the same dataset by running a similar command +from the dataset directiories. +```bash +# Launch tensorboard (default port is 6006) +tensorboard --logdir exp/ --port tf_port +``` +If your launching tensorboard remotely, you should open an ssh tunnel +```bash +# Open port-forwarding connection. Add -Nf option not to open remote. +ssh -L local_port:localhost:tf_port user@ip +``` +Then open `http://localhost:local_port/`. If both ports are the same, you can +click on the tensorboard URL given on the remote, it's just more practical. +## Guiding principles +([↑up to contents](#contents)) +* __Modularity.__ Building blocks are thought and designed to be seamlessly +plugged together. Filterbanks, encoders, maskers, decoders and losses are +all common building blocks that can be combined in a +flexible way to create new systems. +* __Extensibility.__ Extending Asteroid with new features is simple. +Add a new filterbank, separator architecture, dataset or even recipe very +easily. +* __Reproducibility.__ Recipes provide an easy way to reproduce +results with data preparation, system design, training and evaluation in a +single script. This is an essential tool for the community! +## Citing Asteroid +([↑up to contents](#contents)) +If you loved using Asteroid and you want to cite us, use this : +```BibTex +@inproceedings{Pariente2020Asteroid, + title={Asteroid: the {PyTorch}-based audio source separation toolkit for researchers}, + author={Manuel Pariente and Samuele Cornell and Joris Cosentino and Sunit Sivasankaran and + Efthymios Tzinis and Jens Heitkaemper and Michel Olvera and Fabian-Robert Stöter and + Mathieu Hu and Juan M. Martín-Doñas and David Ditter and Ariel Frank and Antoine Deleforge + and Emmanuel Vincent}, + year={2020}, + booktitle={Proc. Interspeech}, +} +``` +[comment]: <> (Badge) +[miniconda]: https://conda.io/miniconda.html +[codecov-badge]: https://codecov.io/gh/asteroid-team/asteroid/branch/master/graph/badge.svg +[codecov]: https://codecov.io/gh/asteroid-team/asteroid +[slack-badge]: https://img.shields.io/badge/slack-chat-green.svg?logo=slack +[slack-invite]: https://join.slack.com/t/asteroid-dev/shared_invite/zt-cn9y85t3-QNHXKD1Et7qoyzu1Ji5bcA +[comment]: <> (Others) +[issue]: https://github.com/asteroid-team/asteroid/issues/new +[pr]: https://github.com/asteroid-team/asteroid/compare + +%package help +Summary: Development documents and examples for asteroid +Provides: python3-asteroid-doc +%description help +Asteroid is a Pytorch-based audio source separation toolkit +that enables fast experimentation on common datasets. +It comes with a source code that supports a large range +of datasets and architectures, and a set of + recipes to reproduce some important papers. +### You use Asteroid or you want to? +Please, if you have found a bug, [open an issue][issue], +if you solved it, [open a pull request][pr]! +Same goes for new features, tell us what you want or help us building it! +Don't hesitate to [join the slack][slack-invite] +and ask questions / suggest new features there as well! +Asteroid is intended to be a __community-based project__ +so hop on and help us! +## Contents +- [Installation](#installation) +- [Tutorials](#tutorials) +- [Running a recipe](#running-a-recipe) +- [Available recipes](#available-recipes) +- [Supported datasets](#supported-datasets) +- [Pretrained models](#pretrained-models) +- [Calls for contributions](#contributing) +- [Citing us](#citing) +## Installation +([↑up to contents](#contents)) +To install Asteroid, clone the repo and install it using +conda, pip or python : +```bash +# First clone and enter the repo +git clone https://github.com/asteroid-team/asteroid +cd asteroid +``` +- With `pip` +```bash +# Install with pip in editable mode +pip install -e . +# Or, install with python in dev mode +# python setup.py develop +``` +- With conda (if you don't already have conda, see [here][miniconda].) +```bash +conda env create -f environment.yml +conda activate asteroid +``` +- Asteroid is also on PyPI, you can install the latest release with +```bash +pip install asteroid +``` +## Tutorials +([↑up to contents](#contents)) +Here is a list of notebooks showing example usage of Asteroid's features. +- [Getting started with Asteroid](./notebooks/00_GettingStarted.ipynb) +- [Introduction and Overview](./notebooks/01_APIOverview.ipynb) +- [Filterbank API](./notebooks/02_Filterbank.ipynb) +- [Permutation invariant training wrapper `PITLossWrapper`](./notebooks/03_PITLossWrapper.ipynb) +- [Process large wav files](./notebooks/04_ProcessLargeAudioFiles.ipynb) +## Running a recipe +([↑up to contents](#contents)) +Running the recipes requires additional packages in most cases, +we recommend running : +```bash +# from asteroid/ +pip install -r requirements.txt +``` +Then choose the recipe you want to run and run it! +```bash +cd egs/wham/ConvTasNet +. ./run.sh +``` +More information in [egs/README.md](./egs). +## Available recipes +([↑up to contents](#contents)) +* [x] [ConvTasnet](./egs/wham/ConvTasNet) ([Luo et al.](https://arxiv.org/abs/1809.07454)) +* [x] [Tasnet](./egs/whamr/TasNet) ([Luo et al.](https://arxiv.org/abs/1711.00541)) +* [x] [Deep clustering](./egs/wsj0-mix/DeepClustering) ([Hershey et al.](https://arxiv.org/abs/1508.04306) and [Isik et al.](https://arxiv.org/abs/1607.02173)) +* [x] [Chimera ++](./egs/wsj0-mix/DeepClustering) ([Luo et al.](https://arxiv.org/abs/1611.06265) and [Wang et al.](https://ieeexplore.ieee.org/document/8462507)) +* [x] [DualPathRNN](./egs/wham/DPRNN) ([Luo et al.](https://arxiv.org/abs/1910.06379)) +* [x] [Two step learning](./egs/wham/TwoStep)([Tzinis et al.](https://arxiv.org/abs/1910.09804)) +* [x] [SudoRMRFNet](./asteroid/models/sudormrf.py) ([Tzinis et al.](https://arxiv.org/abs/2007.06833)) +* [x] [DPTNet](./asteroid/models/dptnet.py) ([Chen et al.](https://arxiv.org/abs/2007.13975)) +* [x] [DCCRNet](./asteroid/models/dccrnet.py) ([Hu et al.](https://arxiv.org/abs/2008.00264)) +* [x] [DCUNet](./asteroid/models/dcunet.py) ([Choi et al.](https://arxiv.org/abs/1903.03107)) +* [x] [CrossNet-Open-Unmix](./asteroid/models/x_umx.py) ([Sawata et al.](https://arxiv.org/abs/2010.04228)) +* [ ] Open-Unmix (coming) ([Stöter et al.](https://sigsep.github.io/open-unmix/)) +* [ ] Wavesplit (coming) ([Zeghidour et al.](https://arxiv.org/abs/2002.08933)) +## Supported datasets +([↑up to contents](#contents)) +* [x] [WSJ0-2mix](./egs/wsj0-mix) / WSJ03mix ([Hershey et al.](https://arxiv.org/abs/1508.04306)) +* [x] [WHAM](./egs/wham) ([Wichern et al.](https://arxiv.org/abs/1907.01160)) +* [x] [WHAMR](./egs/whamr) ([Maciejewski et al.](https://arxiv.org/abs/1910.10279)) +* [x] [LibriMix](./egs/librimix) ([Cosentino et al.](https://arxiv.org/abs/2005.11262)) +* [x] [Microsoft DNS Challenge](./egs/dns_challenge) ([Chandan et al.](https://arxiv.org/abs/2001.08662)) +* [x] [SMS_WSJ](./egs/sms_wsj) ([Drude et al.](https://arxiv.org/abs/1910.13934)) +* [x] [MUSDB18](./asteroid/data/musdb18_dataset.py) ([Raffi et al.](https://hal.inria.fr/hal-02190845)) +* [x] [FUSS](./asteroid/data/fuss_dataset.py) ([Wisdom et al.](https://zenodo.org/record/3694384#.XmUAM-lw3g4)) +* [x] [AVSpeech](./asteroid/data/avspeech_dataset.py) ([Ephrat et al.](https://arxiv.org/abs/1804.03619)) +* [x] [Kinect-WSJ](./asteroid/data/kinect_wsj.py) ([Sivasankaran et al.](https://github.com/sunits/Reverberated_WSJ_2MIX)) +## Pretrained models +([↑up to contents](#contents)) +See [here](./docs/source/readmes/pretrained_models.md) +## Contributing +([↑up to contents](#contents)) +We are always looking to expand our coverage of the source separation +and speech enhancement research, the following is a list of +things we're missing. +You want to contribute? This is a great place to start! +* Wavesplit ([Zeghidour and Grangier](https://arxiv.org/abs/2002.08933)) +* FurcaNeXt ([Shi et al.](https://arxiv.org/abs/1902.04891)) +* DeepCASA ([Liu and Want](https://arxiv.org/abs/1904.11148)) +* VCTK Test sets from [Kadioglu et al.](https://arxiv.org/pdf/2002.08688.pdf) +* Interrupted and cascaded PIT ([Yang et al.](https://arxiv.org/abs/1910.12706)) +* ~Consistency contraints ([Wisdom et al.](https://ieeexplore.ieee.org/abstract/document/8682783))~ +* ~Backpropagable STOI and PESQ.~ +* Parametrized filterbanks from [Tukuljac et al.](https://openreview.net/forum?id=HyewT1BKvr) +* ~End-to-End MISI ([Wang et al.](https://arxiv.org/abs/1804.10204))~ +Don't forget to read our [contributing guidelines](./CONTRIBUTING.md). +You can also open an issue or make a PR to add something we missed in this list. +## TensorBoard visualization +The default logger is TensorBoard in all the recipes. From the recipe folder, +you can run the following to visualize the logs of all your runs. You can +also compare different systems on the same dataset by running a similar command +from the dataset directiories. +```bash +# Launch tensorboard (default port is 6006) +tensorboard --logdir exp/ --port tf_port +``` +If your launching tensorboard remotely, you should open an ssh tunnel +```bash +# Open port-forwarding connection. Add -Nf option not to open remote. +ssh -L local_port:localhost:tf_port user@ip +``` +Then open `http://localhost:local_port/`. If both ports are the same, you can +click on the tensorboard URL given on the remote, it's just more practical. +## Guiding principles +([↑up to contents](#contents)) +* __Modularity.__ Building blocks are thought and designed to be seamlessly +plugged together. Filterbanks, encoders, maskers, decoders and losses are +all common building blocks that can be combined in a +flexible way to create new systems. +* __Extensibility.__ Extending Asteroid with new features is simple. +Add a new filterbank, separator architecture, dataset or even recipe very +easily. +* __Reproducibility.__ Recipes provide an easy way to reproduce +results with data preparation, system design, training and evaluation in a +single script. This is an essential tool for the community! +## Citing Asteroid +([↑up to contents](#contents)) +If you loved using Asteroid and you want to cite us, use this : +```BibTex +@inproceedings{Pariente2020Asteroid, + title={Asteroid: the {PyTorch}-based audio source separation toolkit for researchers}, + author={Manuel Pariente and Samuele Cornell and Joris Cosentino and Sunit Sivasankaran and + Efthymios Tzinis and Jens Heitkaemper and Michel Olvera and Fabian-Robert Stöter and + Mathieu Hu and Juan M. Martín-Doñas and David Ditter and Ariel Frank and Antoine Deleforge + and Emmanuel Vincent}, + year={2020}, + booktitle={Proc. Interspeech}, +} +``` +[comment]: <> (Badge) +[miniconda]: https://conda.io/miniconda.html +[codecov-badge]: https://codecov.io/gh/asteroid-team/asteroid/branch/master/graph/badge.svg +[codecov]: https://codecov.io/gh/asteroid-team/asteroid +[slack-badge]: https://img.shields.io/badge/slack-chat-green.svg?logo=slack +[slack-invite]: https://join.slack.com/t/asteroid-dev/shared_invite/zt-cn9y85t3-QNHXKD1Et7qoyzu1Ji5bcA +[comment]: <> (Others) +[issue]: https://github.com/asteroid-team/asteroid/issues/new +[pr]: https://github.com/asteroid-team/asteroid/compare + +%prep +%autosetup -n asteroid-0.6.0 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-asteroid -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.0-1 +- Package Spec generated @@ -0,0 +1 @@ +1ea4539df59c4c17091e1ce1d9422017 asteroid-0.6.0.tar.gz |
