summaryrefslogtreecommitdiff
path: root/python-asteroid.spec
blob: 47b8b3ff3ba4ea5484ad6e05643e43a4062e1a8d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
%global _empty_manifest_terminate_build 0
Name:		python-asteroid
Version:	0.6.0
Release:	1
Summary:	PyTorch-based audio source separation toolkit
License:	MIT
URL:		https://github.com/asteroid-team/asteroid
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/7b/1b/0b679ae8c58038d06f4d48eb2391f53205c89a5063941d0cdc4f12c79cd0/asteroid-0.6.0.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-scipy
Requires:	python3-torch
Requires:	python3-asteroid-filterbanks
Requires:	python3-SoundFile
Requires:	python3-huggingface-hub
Requires:	python3-PyYAML
Requires:	python3-pandas
Requires:	python3-pytorch-lightning
Requires:	python3-torchaudio
Requires:	python3-pb-bss-eval
Requires:	python3-torch-stoi
Requires:	python3-torch-optimizer
Requires:	python3-julius
Requires:	python3-torchmetrics

%description
Asteroid is a Pytorch-based audio source separation toolkit
that enables fast experimentation on common datasets.
It comes with a source code that supports a large range
of datasets and architectures, and a set of
 recipes to reproduce some important papers.
### You use Asteroid or you want to?
Please, if you have found a bug, [open an issue][issue],
if you solved it, [open a pull request][pr]!
Same goes for new features, tell us what you want or help us building it!
Don't hesitate to [join the slack][slack-invite]
and ask questions / suggest new features there as well!
Asteroid is intended to be a __community-based project__
so hop on and help us!
## Contents
- [Installation](#installation)
- [Tutorials](#tutorials)
- [Running a recipe](#running-a-recipe)
- [Available recipes](#available-recipes)
- [Supported datasets](#supported-datasets)
- [Pretrained models](#pretrained-models)
- [Calls for contributions](#contributing)
- [Citing us](#citing)
## Installation
([↑up to contents](#contents))
To install Asteroid, clone the repo and install it using
conda, pip or python :
```bash
# First clone and enter the repo
git clone https://github.com/asteroid-team/asteroid
cd asteroid
```
- With `pip`
```bash
# Install with pip in editable mode
pip install -e .
# Or, install with python in dev mode
# python setup.py develop
```
- With conda (if you don't already have conda, see [here][miniconda].)
```bash
conda env create -f environment.yml
conda activate asteroid
```
- Asteroid is also on PyPI, you can install the latest release with
```bash
pip install asteroid
```
## Tutorials
([↑up to contents](#contents))
Here is a list of notebooks showing example usage of Asteroid's features.
- [Getting started with Asteroid](./notebooks/00_GettingStarted.ipynb)
- [Introduction and Overview](./notebooks/01_APIOverview.ipynb)
- [Filterbank API](./notebooks/02_Filterbank.ipynb)
- [Permutation invariant training wrapper `PITLossWrapper`](./notebooks/03_PITLossWrapper.ipynb)
- [Process large wav files](./notebooks/04_ProcessLargeAudioFiles.ipynb)
## Running a recipe
([↑up to contents](#contents))
Running the recipes requires additional packages in most cases,
we recommend running :
```bash
# from asteroid/
pip install -r requirements.txt
```
Then choose the recipe you want to run and run it!
```bash
cd egs/wham/ConvTasNet
. ./run.sh
```
More information in [egs/README.md](./egs).
## Available recipes
([↑up to contents](#contents))
* [x] [ConvTasnet](./egs/wham/ConvTasNet) ([Luo et al.](https://arxiv.org/abs/1809.07454))
* [x] [Tasnet](./egs/whamr/TasNet) ([Luo et al.](https://arxiv.org/abs/1711.00541))
* [x] [Deep clustering](./egs/wsj0-mix/DeepClustering) ([Hershey et al.](https://arxiv.org/abs/1508.04306) and [Isik et al.](https://arxiv.org/abs/1607.02173))
* [x] [Chimera ++](./egs/wsj0-mix/DeepClustering) ([Luo et al.](https://arxiv.org/abs/1611.06265) and [Wang et al.](https://ieeexplore.ieee.org/document/8462507))
* [x] [DualPathRNN](./egs/wham/DPRNN) ([Luo et al.](https://arxiv.org/abs/1910.06379))
* [x] [Two step learning](./egs/wham/TwoStep)([Tzinis et al.](https://arxiv.org/abs/1910.09804))
* [x] [SudoRMRFNet](./asteroid/models/sudormrf.py) ([Tzinis et al.](https://arxiv.org/abs/2007.06833))
* [x] [DPTNet](./asteroid/models/dptnet.py) ([Chen et al.](https://arxiv.org/abs/2007.13975))
* [x] [DCCRNet](./asteroid/models/dccrnet.py) ([Hu et al.](https://arxiv.org/abs/2008.00264))
* [x] [DCUNet](./asteroid/models/dcunet.py) ([Choi et al.](https://arxiv.org/abs/1903.03107))
* [x] [CrossNet-Open-Unmix](./asteroid/models/x_umx.py) ([Sawata et al.](https://arxiv.org/abs/2010.04228))
* [ ] Open-Unmix (coming) ([Stöter et al.](https://sigsep.github.io/open-unmix/))
* [ ] Wavesplit (coming) ([Zeghidour et al.](https://arxiv.org/abs/2002.08933))
## Supported datasets
([↑up to contents](#contents))
* [x] [WSJ0-2mix](./egs/wsj0-mix) / WSJ03mix ([Hershey et al.](https://arxiv.org/abs/1508.04306))
* [x] [WHAM](./egs/wham) ([Wichern et al.](https://arxiv.org/abs/1907.01160))
* [x] [WHAMR](./egs/whamr) ([Maciejewski et al.](https://arxiv.org/abs/1910.10279))
* [x] [LibriMix](./egs/librimix) ([Cosentino et al.](https://arxiv.org/abs/2005.11262))
* [x] [Microsoft DNS Challenge](./egs/dns_challenge) ([Chandan et al.](https://arxiv.org/abs/2001.08662))
* [x] [SMS_WSJ](./egs/sms_wsj) ([Drude et al.](https://arxiv.org/abs/1910.13934))
* [x] [MUSDB18](./asteroid/data/musdb18_dataset.py) ([Raffi et al.](https://hal.inria.fr/hal-02190845))
* [x] [FUSS](./asteroid/data/fuss_dataset.py) ([Wisdom et al.](https://zenodo.org/record/3694384#.XmUAM-lw3g4))
* [x] [AVSpeech](./asteroid/data/avspeech_dataset.py) ([Ephrat et al.](https://arxiv.org/abs/1804.03619))
* [x] [Kinect-WSJ](./asteroid/data/kinect_wsj.py) ([Sivasankaran et al.](https://github.com/sunits/Reverberated_WSJ_2MIX))
## Pretrained models
([↑up to contents](#contents))
See [here](./docs/source/readmes/pretrained_models.md)
## Contributing
([↑up to contents](#contents))
We are always looking to expand our coverage of the source separation
and speech enhancement research, the following is a list of
things we're missing.
You want to contribute? This is a great place to start!
* Wavesplit ([Zeghidour and Grangier](https://arxiv.org/abs/2002.08933))
* FurcaNeXt ([Shi et al.](https://arxiv.org/abs/1902.04891))
* DeepCASA ([Liu and Want](https://arxiv.org/abs/1904.11148))
* VCTK Test sets from [Kadioglu et al.](https://arxiv.org/pdf/2002.08688.pdf)
* Interrupted and cascaded PIT ([Yang et al.](https://arxiv.org/abs/1910.12706))
* ~Consistency contraints ([Wisdom et al.](https://ieeexplore.ieee.org/abstract/document/8682783))~
* ~Backpropagable STOI and PESQ.~
* Parametrized filterbanks from [Tukuljac et al.](https://openreview.net/forum?id=HyewT1BKvr)
* ~End-to-End MISI ([Wang et al.](https://arxiv.org/abs/1804.10204))~
Don't forget to read our [contributing guidelines](./CONTRIBUTING.md).
You can also open an issue or make a PR to add something we missed in this list.
## TensorBoard visualization
The default logger is TensorBoard in all the recipes. From the recipe folder,
you can run the following to visualize the logs of all your runs. You can
also compare different systems on the same dataset by running a similar command
from the dataset directiories.
```bash
# Launch tensorboard (default port is 6006)
tensorboard --logdir exp/ --port tf_port
```
If your launching tensorboard remotely, you should open an ssh tunnel
```bash
# Open port-forwarding connection. Add -Nf option not to open remote.
ssh -L local_port:localhost:tf_port user@ip
```
Then open `http://localhost:local_port/`. If both ports are the same, you can
click on the tensorboard URL given on the remote, it's just more practical.
## Guiding principles
([↑up to contents](#contents))
* __Modularity.__ Building blocks are thought and designed to be seamlessly
plugged together. Filterbanks, encoders, maskers, decoders and losses are
all common building blocks that can be combined in a
flexible way to create new systems.
* __Extensibility.__ Extending Asteroid with new features is simple.
Add a new filterbank, separator architecture, dataset or even recipe very
easily.
* __Reproducibility.__ Recipes provide an easy way to reproduce
results with data preparation, system design, training and evaluation in a
single script. This is an essential tool for the community!
## Citing Asteroid
([↑up to contents](#contents))
If you loved using Asteroid and you want to cite us, use this :
```BibTex
@inproceedings{Pariente2020Asteroid,
    title={Asteroid: the {PyTorch}-based audio source separation toolkit for researchers},
    author={Manuel Pariente and Samuele Cornell and Joris Cosentino and Sunit Sivasankaran and
            Efthymios Tzinis and Jens Heitkaemper and Michel Olvera and Fabian-Robert Stöter and
            Mathieu Hu and Juan M. Martín-Doñas and David Ditter and Ariel Frank and Antoine Deleforge
            and Emmanuel Vincent},
    year={2020},
    booktitle={Proc. Interspeech},
}
```
[comment]: <> (Badge)
[miniconda]: https://conda.io/miniconda.html
[codecov-badge]: https://codecov.io/gh/asteroid-team/asteroid/branch/master/graph/badge.svg
[codecov]: https://codecov.io/gh/asteroid-team/asteroid
[slack-badge]: https://img.shields.io/badge/slack-chat-green.svg?logo=slack
[slack-invite]: https://join.slack.com/t/asteroid-dev/shared_invite/zt-cn9y85t3-QNHXKD1Et7qoyzu1Ji5bcA
[comment]: <> (Others)
[issue]: https://github.com/asteroid-team/asteroid/issues/new
[pr]: https://github.com/asteroid-team/asteroid/compare

%package -n python3-asteroid
Summary:	PyTorch-based audio source separation toolkit
Provides:	python-asteroid
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-asteroid
Asteroid is a Pytorch-based audio source separation toolkit
that enables fast experimentation on common datasets.
It comes with a source code that supports a large range
of datasets and architectures, and a set of
 recipes to reproduce some important papers.
### You use Asteroid or you want to?
Please, if you have found a bug, [open an issue][issue],
if you solved it, [open a pull request][pr]!
Same goes for new features, tell us what you want or help us building it!
Don't hesitate to [join the slack][slack-invite]
and ask questions / suggest new features there as well!
Asteroid is intended to be a __community-based project__
so hop on and help us!
## Contents
- [Installation](#installation)
- [Tutorials](#tutorials)
- [Running a recipe](#running-a-recipe)
- [Available recipes](#available-recipes)
- [Supported datasets](#supported-datasets)
- [Pretrained models](#pretrained-models)
- [Calls for contributions](#contributing)
- [Citing us](#citing)
## Installation
([↑up to contents](#contents))
To install Asteroid, clone the repo and install it using
conda, pip or python :
```bash
# First clone and enter the repo
git clone https://github.com/asteroid-team/asteroid
cd asteroid
```
- With `pip`
```bash
# Install with pip in editable mode
pip install -e .
# Or, install with python in dev mode
# python setup.py develop
```
- With conda (if you don't already have conda, see [here][miniconda].)
```bash
conda env create -f environment.yml
conda activate asteroid
```
- Asteroid is also on PyPI, you can install the latest release with
```bash
pip install asteroid
```
## Tutorials
([↑up to contents](#contents))
Here is a list of notebooks showing example usage of Asteroid's features.
- [Getting started with Asteroid](./notebooks/00_GettingStarted.ipynb)
- [Introduction and Overview](./notebooks/01_APIOverview.ipynb)
- [Filterbank API](./notebooks/02_Filterbank.ipynb)
- [Permutation invariant training wrapper `PITLossWrapper`](./notebooks/03_PITLossWrapper.ipynb)
- [Process large wav files](./notebooks/04_ProcessLargeAudioFiles.ipynb)
## Running a recipe
([↑up to contents](#contents))
Running the recipes requires additional packages in most cases,
we recommend running :
```bash
# from asteroid/
pip install -r requirements.txt
```
Then choose the recipe you want to run and run it!
```bash
cd egs/wham/ConvTasNet
. ./run.sh
```
More information in [egs/README.md](./egs).
## Available recipes
([↑up to contents](#contents))
* [x] [ConvTasnet](./egs/wham/ConvTasNet) ([Luo et al.](https://arxiv.org/abs/1809.07454))
* [x] [Tasnet](./egs/whamr/TasNet) ([Luo et al.](https://arxiv.org/abs/1711.00541))
* [x] [Deep clustering](./egs/wsj0-mix/DeepClustering) ([Hershey et al.](https://arxiv.org/abs/1508.04306) and [Isik et al.](https://arxiv.org/abs/1607.02173))
* [x] [Chimera ++](./egs/wsj0-mix/DeepClustering) ([Luo et al.](https://arxiv.org/abs/1611.06265) and [Wang et al.](https://ieeexplore.ieee.org/document/8462507))
* [x] [DualPathRNN](./egs/wham/DPRNN) ([Luo et al.](https://arxiv.org/abs/1910.06379))
* [x] [Two step learning](./egs/wham/TwoStep)([Tzinis et al.](https://arxiv.org/abs/1910.09804))
* [x] [SudoRMRFNet](./asteroid/models/sudormrf.py) ([Tzinis et al.](https://arxiv.org/abs/2007.06833))
* [x] [DPTNet](./asteroid/models/dptnet.py) ([Chen et al.](https://arxiv.org/abs/2007.13975))
* [x] [DCCRNet](./asteroid/models/dccrnet.py) ([Hu et al.](https://arxiv.org/abs/2008.00264))
* [x] [DCUNet](./asteroid/models/dcunet.py) ([Choi et al.](https://arxiv.org/abs/1903.03107))
* [x] [CrossNet-Open-Unmix](./asteroid/models/x_umx.py) ([Sawata et al.](https://arxiv.org/abs/2010.04228))
* [ ] Open-Unmix (coming) ([Stöter et al.](https://sigsep.github.io/open-unmix/))
* [ ] Wavesplit (coming) ([Zeghidour et al.](https://arxiv.org/abs/2002.08933))
## Supported datasets
([↑up to contents](#contents))
* [x] [WSJ0-2mix](./egs/wsj0-mix) / WSJ03mix ([Hershey et al.](https://arxiv.org/abs/1508.04306))
* [x] [WHAM](./egs/wham) ([Wichern et al.](https://arxiv.org/abs/1907.01160))
* [x] [WHAMR](./egs/whamr) ([Maciejewski et al.](https://arxiv.org/abs/1910.10279))
* [x] [LibriMix](./egs/librimix) ([Cosentino et al.](https://arxiv.org/abs/2005.11262))
* [x] [Microsoft DNS Challenge](./egs/dns_challenge) ([Chandan et al.](https://arxiv.org/abs/2001.08662))
* [x] [SMS_WSJ](./egs/sms_wsj) ([Drude et al.](https://arxiv.org/abs/1910.13934))
* [x] [MUSDB18](./asteroid/data/musdb18_dataset.py) ([Raffi et al.](https://hal.inria.fr/hal-02190845))
* [x] [FUSS](./asteroid/data/fuss_dataset.py) ([Wisdom et al.](https://zenodo.org/record/3694384#.XmUAM-lw3g4))
* [x] [AVSpeech](./asteroid/data/avspeech_dataset.py) ([Ephrat et al.](https://arxiv.org/abs/1804.03619))
* [x] [Kinect-WSJ](./asteroid/data/kinect_wsj.py) ([Sivasankaran et al.](https://github.com/sunits/Reverberated_WSJ_2MIX))
## Pretrained models
([↑up to contents](#contents))
See [here](./docs/source/readmes/pretrained_models.md)
## Contributing
([↑up to contents](#contents))
We are always looking to expand our coverage of the source separation
and speech enhancement research, the following is a list of
things we're missing.
You want to contribute? This is a great place to start!
* Wavesplit ([Zeghidour and Grangier](https://arxiv.org/abs/2002.08933))
* FurcaNeXt ([Shi et al.](https://arxiv.org/abs/1902.04891))
* DeepCASA ([Liu and Want](https://arxiv.org/abs/1904.11148))
* VCTK Test sets from [Kadioglu et al.](https://arxiv.org/pdf/2002.08688.pdf)
* Interrupted and cascaded PIT ([Yang et al.](https://arxiv.org/abs/1910.12706))
* ~Consistency contraints ([Wisdom et al.](https://ieeexplore.ieee.org/abstract/document/8682783))~
* ~Backpropagable STOI and PESQ.~
* Parametrized filterbanks from [Tukuljac et al.](https://openreview.net/forum?id=HyewT1BKvr)
* ~End-to-End MISI ([Wang et al.](https://arxiv.org/abs/1804.10204))~
Don't forget to read our [contributing guidelines](./CONTRIBUTING.md).
You can also open an issue or make a PR to add something we missed in this list.
## TensorBoard visualization
The default logger is TensorBoard in all the recipes. From the recipe folder,
you can run the following to visualize the logs of all your runs. You can
also compare different systems on the same dataset by running a similar command
from the dataset directiories.
```bash
# Launch tensorboard (default port is 6006)
tensorboard --logdir exp/ --port tf_port
```
If your launching tensorboard remotely, you should open an ssh tunnel
```bash
# Open port-forwarding connection. Add -Nf option not to open remote.
ssh -L local_port:localhost:tf_port user@ip
```
Then open `http://localhost:local_port/`. If both ports are the same, you can
click on the tensorboard URL given on the remote, it's just more practical.
## Guiding principles
([↑up to contents](#contents))
* __Modularity.__ Building blocks are thought and designed to be seamlessly
plugged together. Filterbanks, encoders, maskers, decoders and losses are
all common building blocks that can be combined in a
flexible way to create new systems.
* __Extensibility.__ Extending Asteroid with new features is simple.
Add a new filterbank, separator architecture, dataset or even recipe very
easily.
* __Reproducibility.__ Recipes provide an easy way to reproduce
results with data preparation, system design, training and evaluation in a
single script. This is an essential tool for the community!
## Citing Asteroid
([↑up to contents](#contents))
If you loved using Asteroid and you want to cite us, use this :
```BibTex
@inproceedings{Pariente2020Asteroid,
    title={Asteroid: the {PyTorch}-based audio source separation toolkit for researchers},
    author={Manuel Pariente and Samuele Cornell and Joris Cosentino and Sunit Sivasankaran and
            Efthymios Tzinis and Jens Heitkaemper and Michel Olvera and Fabian-Robert Stöter and
            Mathieu Hu and Juan M. Martín-Doñas and David Ditter and Ariel Frank and Antoine Deleforge
            and Emmanuel Vincent},
    year={2020},
    booktitle={Proc. Interspeech},
}
```
[comment]: <> (Badge)
[miniconda]: https://conda.io/miniconda.html
[codecov-badge]: https://codecov.io/gh/asteroid-team/asteroid/branch/master/graph/badge.svg
[codecov]: https://codecov.io/gh/asteroid-team/asteroid
[slack-badge]: https://img.shields.io/badge/slack-chat-green.svg?logo=slack
[slack-invite]: https://join.slack.com/t/asteroid-dev/shared_invite/zt-cn9y85t3-QNHXKD1Et7qoyzu1Ji5bcA
[comment]: <> (Others)
[issue]: https://github.com/asteroid-team/asteroid/issues/new
[pr]: https://github.com/asteroid-team/asteroid/compare

%package help
Summary:	Development documents and examples for asteroid
Provides:	python3-asteroid-doc
%description help
Asteroid is a Pytorch-based audio source separation toolkit
that enables fast experimentation on common datasets.
It comes with a source code that supports a large range
of datasets and architectures, and a set of
 recipes to reproduce some important papers.
### You use Asteroid or you want to?
Please, if you have found a bug, [open an issue][issue],
if you solved it, [open a pull request][pr]!
Same goes for new features, tell us what you want or help us building it!
Don't hesitate to [join the slack][slack-invite]
and ask questions / suggest new features there as well!
Asteroid is intended to be a __community-based project__
so hop on and help us!
## Contents
- [Installation](#installation)
- [Tutorials](#tutorials)
- [Running a recipe](#running-a-recipe)
- [Available recipes](#available-recipes)
- [Supported datasets](#supported-datasets)
- [Pretrained models](#pretrained-models)
- [Calls for contributions](#contributing)
- [Citing us](#citing)
## Installation
([↑up to contents](#contents))
To install Asteroid, clone the repo and install it using
conda, pip or python :
```bash
# First clone and enter the repo
git clone https://github.com/asteroid-team/asteroid
cd asteroid
```
- With `pip`
```bash
# Install with pip in editable mode
pip install -e .
# Or, install with python in dev mode
# python setup.py develop
```
- With conda (if you don't already have conda, see [here][miniconda].)
```bash
conda env create -f environment.yml
conda activate asteroid
```
- Asteroid is also on PyPI, you can install the latest release with
```bash
pip install asteroid
```
## Tutorials
([↑up to contents](#contents))
Here is a list of notebooks showing example usage of Asteroid's features.
- [Getting started with Asteroid](./notebooks/00_GettingStarted.ipynb)
- [Introduction and Overview](./notebooks/01_APIOverview.ipynb)
- [Filterbank API](./notebooks/02_Filterbank.ipynb)
- [Permutation invariant training wrapper `PITLossWrapper`](./notebooks/03_PITLossWrapper.ipynb)
- [Process large wav files](./notebooks/04_ProcessLargeAudioFiles.ipynb)
## Running a recipe
([↑up to contents](#contents))
Running the recipes requires additional packages in most cases,
we recommend running :
```bash
# from asteroid/
pip install -r requirements.txt
```
Then choose the recipe you want to run and run it!
```bash
cd egs/wham/ConvTasNet
. ./run.sh
```
More information in [egs/README.md](./egs).
## Available recipes
([↑up to contents](#contents))
* [x] [ConvTasnet](./egs/wham/ConvTasNet) ([Luo et al.](https://arxiv.org/abs/1809.07454))
* [x] [Tasnet](./egs/whamr/TasNet) ([Luo et al.](https://arxiv.org/abs/1711.00541))
* [x] [Deep clustering](./egs/wsj0-mix/DeepClustering) ([Hershey et al.](https://arxiv.org/abs/1508.04306) and [Isik et al.](https://arxiv.org/abs/1607.02173))
* [x] [Chimera ++](./egs/wsj0-mix/DeepClustering) ([Luo et al.](https://arxiv.org/abs/1611.06265) and [Wang et al.](https://ieeexplore.ieee.org/document/8462507))
* [x] [DualPathRNN](./egs/wham/DPRNN) ([Luo et al.](https://arxiv.org/abs/1910.06379))
* [x] [Two step learning](./egs/wham/TwoStep)([Tzinis et al.](https://arxiv.org/abs/1910.09804))
* [x] [SudoRMRFNet](./asteroid/models/sudormrf.py) ([Tzinis et al.](https://arxiv.org/abs/2007.06833))
* [x] [DPTNet](./asteroid/models/dptnet.py) ([Chen et al.](https://arxiv.org/abs/2007.13975))
* [x] [DCCRNet](./asteroid/models/dccrnet.py) ([Hu et al.](https://arxiv.org/abs/2008.00264))
* [x] [DCUNet](./asteroid/models/dcunet.py) ([Choi et al.](https://arxiv.org/abs/1903.03107))
* [x] [CrossNet-Open-Unmix](./asteroid/models/x_umx.py) ([Sawata et al.](https://arxiv.org/abs/2010.04228))
* [ ] Open-Unmix (coming) ([Stöter et al.](https://sigsep.github.io/open-unmix/))
* [ ] Wavesplit (coming) ([Zeghidour et al.](https://arxiv.org/abs/2002.08933))
## Supported datasets
([↑up to contents](#contents))
* [x] [WSJ0-2mix](./egs/wsj0-mix) / WSJ03mix ([Hershey et al.](https://arxiv.org/abs/1508.04306))
* [x] [WHAM](./egs/wham) ([Wichern et al.](https://arxiv.org/abs/1907.01160))
* [x] [WHAMR](./egs/whamr) ([Maciejewski et al.](https://arxiv.org/abs/1910.10279))
* [x] [LibriMix](./egs/librimix) ([Cosentino et al.](https://arxiv.org/abs/2005.11262))
* [x] [Microsoft DNS Challenge](./egs/dns_challenge) ([Chandan et al.](https://arxiv.org/abs/2001.08662))
* [x] [SMS_WSJ](./egs/sms_wsj) ([Drude et al.](https://arxiv.org/abs/1910.13934))
* [x] [MUSDB18](./asteroid/data/musdb18_dataset.py) ([Raffi et al.](https://hal.inria.fr/hal-02190845))
* [x] [FUSS](./asteroid/data/fuss_dataset.py) ([Wisdom et al.](https://zenodo.org/record/3694384#.XmUAM-lw3g4))
* [x] [AVSpeech](./asteroid/data/avspeech_dataset.py) ([Ephrat et al.](https://arxiv.org/abs/1804.03619))
* [x] [Kinect-WSJ](./asteroid/data/kinect_wsj.py) ([Sivasankaran et al.](https://github.com/sunits/Reverberated_WSJ_2MIX))
## Pretrained models
([↑up to contents](#contents))
See [here](./docs/source/readmes/pretrained_models.md)
## Contributing
([↑up to contents](#contents))
We are always looking to expand our coverage of the source separation
and speech enhancement research, the following is a list of
things we're missing.
You want to contribute? This is a great place to start!
* Wavesplit ([Zeghidour and Grangier](https://arxiv.org/abs/2002.08933))
* FurcaNeXt ([Shi et al.](https://arxiv.org/abs/1902.04891))
* DeepCASA ([Liu and Want](https://arxiv.org/abs/1904.11148))
* VCTK Test sets from [Kadioglu et al.](https://arxiv.org/pdf/2002.08688.pdf)
* Interrupted and cascaded PIT ([Yang et al.](https://arxiv.org/abs/1910.12706))
* ~Consistency contraints ([Wisdom et al.](https://ieeexplore.ieee.org/abstract/document/8682783))~
* ~Backpropagable STOI and PESQ.~
* Parametrized filterbanks from [Tukuljac et al.](https://openreview.net/forum?id=HyewT1BKvr)
* ~End-to-End MISI ([Wang et al.](https://arxiv.org/abs/1804.10204))~
Don't forget to read our [contributing guidelines](./CONTRIBUTING.md).
You can also open an issue or make a PR to add something we missed in this list.
## TensorBoard visualization
The default logger is TensorBoard in all the recipes. From the recipe folder,
you can run the following to visualize the logs of all your runs. You can
also compare different systems on the same dataset by running a similar command
from the dataset directiories.
```bash
# Launch tensorboard (default port is 6006)
tensorboard --logdir exp/ --port tf_port
```
If your launching tensorboard remotely, you should open an ssh tunnel
```bash
# Open port-forwarding connection. Add -Nf option not to open remote.
ssh -L local_port:localhost:tf_port user@ip
```
Then open `http://localhost:local_port/`. If both ports are the same, you can
click on the tensorboard URL given on the remote, it's just more practical.
## Guiding principles
([↑up to contents](#contents))
* __Modularity.__ Building blocks are thought and designed to be seamlessly
plugged together. Filterbanks, encoders, maskers, decoders and losses are
all common building blocks that can be combined in a
flexible way to create new systems.
* __Extensibility.__ Extending Asteroid with new features is simple.
Add a new filterbank, separator architecture, dataset or even recipe very
easily.
* __Reproducibility.__ Recipes provide an easy way to reproduce
results with data preparation, system design, training and evaluation in a
single script. This is an essential tool for the community!
## Citing Asteroid
([↑up to contents](#contents))
If you loved using Asteroid and you want to cite us, use this :
```BibTex
@inproceedings{Pariente2020Asteroid,
    title={Asteroid: the {PyTorch}-based audio source separation toolkit for researchers},
    author={Manuel Pariente and Samuele Cornell and Joris Cosentino and Sunit Sivasankaran and
            Efthymios Tzinis and Jens Heitkaemper and Michel Olvera and Fabian-Robert Stöter and
            Mathieu Hu and Juan M. Martín-Doñas and David Ditter and Ariel Frank and Antoine Deleforge
            and Emmanuel Vincent},
    year={2020},
    booktitle={Proc. Interspeech},
}
```
[comment]: <> (Badge)
[miniconda]: https://conda.io/miniconda.html
[codecov-badge]: https://codecov.io/gh/asteroid-team/asteroid/branch/master/graph/badge.svg
[codecov]: https://codecov.io/gh/asteroid-team/asteroid
[slack-badge]: https://img.shields.io/badge/slack-chat-green.svg?logo=slack
[slack-invite]: https://join.slack.com/t/asteroid-dev/shared_invite/zt-cn9y85t3-QNHXKD1Et7qoyzu1Ji5bcA
[comment]: <> (Others)
[issue]: https://github.com/asteroid-team/asteroid/issues/new
[pr]: https://github.com/asteroid-team/asteroid/compare

%prep
%autosetup -n asteroid-0.6.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-asteroid -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.0-1
- Package Spec generated