summaryrefslogtreecommitdiff
path: root/python-autodiffcc.spec
blob: b7153cda29ce3da0e24043c0681e190d2a47c0d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
%global _empty_manifest_terminate_build 0
Name:		python-AutoDiffCC
Version:	1.1.1
Release:	1
Summary:	An AutoDifferentiation Library
License:	MIT License
URL:		https://github.com/Crimson-Computing/cs207-FinalProject
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/b1/40/9ba46370fac036bb312b57d5b3fa4fe8ea9340adc9798a10409fe75ba31a/AutoDiffCC-1.1.1.tar.gz
BuildArch:	noarch


%description

<img align="right" width="100" height="100" src="https://user-images.githubusercontent.com/43005886/70481100-8919f480-1aaf-11ea-8b0e-f8a8bde5c6ef.png">

<img align="right" width="150" height="100" src="https://user-images.githubusercontent.com/43005886/70541950-ed7f9700-1b35-11ea-8148-1add138908bf.png">

[![Build Status](https://travis-ci.org/Crimson-Computing/cs207-FinalProject.svg?branch=master)](https://travis-ci.org/Crimson-Computing/cs207-FinalProject)

[![codecov](https://codecov.io/gh/Crimson-Computing/cs207-FinalProject/branch/master/graph/badge.svg)](https://codecov.io/gh/Crimson-Computing/cs207-FinalProject)




Click [here](https://github.com/Crimson-Computing/cs207-FinalProject/blob/master/docs/documentation.md) to see full documentation


## Final Project - AutoDiffCC Python Package
## CS207: Systems Development for Computational Science in Fall 2019 
#### Group 22
- Alex Spiride
- Maja Garbulinska
- Matthew Finney
- Zhiying Xu

### Overview 

With the evolution of science and the growing computational possibilities, differentiation plays a critical role in a wide range of scientific and industrial applications of computer science. However, the precise computation of symbolic derivatives is computationally expensive, and not even possible in all situations, whereas the finite differencing method is not always accurate or stable. Automatic differentiation, however, provides a computationally efficient way to calculate derivatives, particularly of complex functions, for applications where accuracy and performance at scale are important.

Our package **AutoDiffCC** provides is an easy to use package that computes derivates of scalar and vector functions using the concept of automatic differentation. 

We invite you to take a look at our repo and use **AutoDiffCC**!

### Installation Guide

AutoDiffCC supports package installation via `pip`. Users can install the package in the command line with the following command.

```buildoutcfg
pip install autodiffcc
```

### How To Use 
To use **AutoDiffCC** you first have to import it. If you already have it installed, you can do it by just running:

``` python 
# Import the autodiffcc package
>>> import autodiffcc as ad 
```

#### Basic Applications
There are several ways in which you can take advantage of **AutoDiffCC**. Below we present some examples.

###### Example 1  
A simple example using overloaded operators is described below. If you would like to evaluate ``f = x * x`` at ``x = 2``, first initiate an AD object ``x`` with ``x = ad.AD(val=2.0, der=1.0)``, where ``2`` is the value and ``1`` is the derivative. Then simply define your function ``f = x * x`` and enjoy the results. You can see this example implemented below. 

``` python 
# Overload basic arithmetic operations
>>> x = ad.AD(val=2.0, der=1.0) 
>>> f = x * x
>>> print(f.val, f.der)
4.0 4.0
```

Alternatively, you can just proceed as follows: 

``` python 
>>> def f(x):
>>>   return x*x
>>> dfdx = differentiate(f)
>>> dfdx(x=2.0)
4.0 # this is the derivative value at x=2 
```

###### Example 2

To use more complex function like cos(x) follow this example using our built-in module ADmath: 

``` python 
>>> x = AD(val=3.0, der=1.0)
>>> ADmath.cos(x) 
(array(-0.9899924966004454), array(-0.1411200080598672))
 ```    

 Again, you can also do: 

``` python 
>>> def f(x):
>>>   return ADmath.cos(x) 
>>> dfdx = differentiate(f)
>>> dfdx( x=3.0)
-0.1411200080598672 # this is the derivative value evaluated at 3.0.
```


#### Offered Extentions
##### Root Finding
Our package offers three root finding methods. The bisection method, the newton-fourier method and the newton-raphson method.

###### Example 1 

``` python RootFinder example for the bisection method 
# Import the autodiffcc package
>>> import autodiffcc as ad

# Find the foot of a function with two variables using the bisection method

>>> def f(x, y):
>>>    return x + y - 100
>>> interval = [[1, 2], [3, 100]]
>>> my_root = ad.find_root(function=f, method='bisection', interval=interval)
>>> print(my_root)
[1.999999999999993, 98.0]
```

###### Example 2

``` python
# Import the autodiffcc package
>>> import autodiffcc as ad
    >>> interval = [[3, -3], [3, -3]]
    >>> my_root = ad.find_root(lambda x, y: (2 * x + y - 2, y + 2), interval=interval, method='newton-fourier', max_iter=150)
    >>> print(my_root)
    [ 2. -2.]
```

###### Example 3

``` python
# Import the autodiffcc package
>>> import autodiffcc as ad
    >>> def f1var(x):
    >>>     return (x + 2) * (x - 3)

    >>> my_root = ad.find_root(function=f1var, method='newton', start_values=1, threshold=1e-8)
    >>> print(my_root)
    3.
```

##### Expression parsing

###### Example 1

Another extension we offer is expression parsing. The below are two examples of parsing string expressions to function objects `fn` corresponding to the expressions. 

``` python 
# Import the autodiffcc package 
>>> import autodiffcc as ad
>>> from autodiffcc.parser import expressioncc

>>> x = ad.AD(2, der = [1, 0])
>>> y = ad.AD(3, der = [0, 1])

# Use expressioncc to parse a normal expression
>>> fn = expressioncc('x+y+1', ['x', 'y']).get_fn()
>>> print(fn(x,y).val)
6.0
>>> print(fn(x,y).der)
[1. 1.]

# Use expressioncc to parse an equation (left - right)
>>> fn = expressioncc('x = -y-1', ['x', 'y']).get_fn()
>>> print(fn(x,y).val)
6.0
>>> print(fn(x,y).der)
[1. 1.]
```

## Resources


We would like to acknowledge Glenfletcher as his contribution was used in our package.
* Glenfletcher 2014. , DOI: https://github.com/glenfletcher/Equation/tree/master/Equation 




%package -n python3-AutoDiffCC
Summary:	An AutoDifferentiation Library
Provides:	python-AutoDiffCC
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-AutoDiffCC

<img align="right" width="100" height="100" src="https://user-images.githubusercontent.com/43005886/70481100-8919f480-1aaf-11ea-8b0e-f8a8bde5c6ef.png">

<img align="right" width="150" height="100" src="https://user-images.githubusercontent.com/43005886/70541950-ed7f9700-1b35-11ea-8148-1add138908bf.png">

[![Build Status](https://travis-ci.org/Crimson-Computing/cs207-FinalProject.svg?branch=master)](https://travis-ci.org/Crimson-Computing/cs207-FinalProject)

[![codecov](https://codecov.io/gh/Crimson-Computing/cs207-FinalProject/branch/master/graph/badge.svg)](https://codecov.io/gh/Crimson-Computing/cs207-FinalProject)




Click [here](https://github.com/Crimson-Computing/cs207-FinalProject/blob/master/docs/documentation.md) to see full documentation


## Final Project - AutoDiffCC Python Package
## CS207: Systems Development for Computational Science in Fall 2019 
#### Group 22
- Alex Spiride
- Maja Garbulinska
- Matthew Finney
- Zhiying Xu

### Overview 

With the evolution of science and the growing computational possibilities, differentiation plays a critical role in a wide range of scientific and industrial applications of computer science. However, the precise computation of symbolic derivatives is computationally expensive, and not even possible in all situations, whereas the finite differencing method is not always accurate or stable. Automatic differentiation, however, provides a computationally efficient way to calculate derivatives, particularly of complex functions, for applications where accuracy and performance at scale are important.

Our package **AutoDiffCC** provides is an easy to use package that computes derivates of scalar and vector functions using the concept of automatic differentation. 

We invite you to take a look at our repo and use **AutoDiffCC**!

### Installation Guide

AutoDiffCC supports package installation via `pip`. Users can install the package in the command line with the following command.

```buildoutcfg
pip install autodiffcc
```

### How To Use 
To use **AutoDiffCC** you first have to import it. If you already have it installed, you can do it by just running:

``` python 
# Import the autodiffcc package
>>> import autodiffcc as ad 
```

#### Basic Applications
There are several ways in which you can take advantage of **AutoDiffCC**. Below we present some examples.

###### Example 1  
A simple example using overloaded operators is described below. If you would like to evaluate ``f = x * x`` at ``x = 2``, first initiate an AD object ``x`` with ``x = ad.AD(val=2.0, der=1.0)``, where ``2`` is the value and ``1`` is the derivative. Then simply define your function ``f = x * x`` and enjoy the results. You can see this example implemented below. 

``` python 
# Overload basic arithmetic operations
>>> x = ad.AD(val=2.0, der=1.0) 
>>> f = x * x
>>> print(f.val, f.der)
4.0 4.0
```

Alternatively, you can just proceed as follows: 

``` python 
>>> def f(x):
>>>   return x*x
>>> dfdx = differentiate(f)
>>> dfdx(x=2.0)
4.0 # this is the derivative value at x=2 
```

###### Example 2

To use more complex function like cos(x) follow this example using our built-in module ADmath: 

``` python 
>>> x = AD(val=3.0, der=1.0)
>>> ADmath.cos(x) 
(array(-0.9899924966004454), array(-0.1411200080598672))
 ```    

 Again, you can also do: 

``` python 
>>> def f(x):
>>>   return ADmath.cos(x) 
>>> dfdx = differentiate(f)
>>> dfdx( x=3.0)
-0.1411200080598672 # this is the derivative value evaluated at 3.0.
```


#### Offered Extentions
##### Root Finding
Our package offers three root finding methods. The bisection method, the newton-fourier method and the newton-raphson method.

###### Example 1 

``` python RootFinder example for the bisection method 
# Import the autodiffcc package
>>> import autodiffcc as ad

# Find the foot of a function with two variables using the bisection method

>>> def f(x, y):
>>>    return x + y - 100
>>> interval = [[1, 2], [3, 100]]
>>> my_root = ad.find_root(function=f, method='bisection', interval=interval)
>>> print(my_root)
[1.999999999999993, 98.0]
```

###### Example 2

``` python
# Import the autodiffcc package
>>> import autodiffcc as ad
    >>> interval = [[3, -3], [3, -3]]
    >>> my_root = ad.find_root(lambda x, y: (2 * x + y - 2, y + 2), interval=interval, method='newton-fourier', max_iter=150)
    >>> print(my_root)
    [ 2. -2.]
```

###### Example 3

``` python
# Import the autodiffcc package
>>> import autodiffcc as ad
    >>> def f1var(x):
    >>>     return (x + 2) * (x - 3)

    >>> my_root = ad.find_root(function=f1var, method='newton', start_values=1, threshold=1e-8)
    >>> print(my_root)
    3.
```

##### Expression parsing

###### Example 1

Another extension we offer is expression parsing. The below are two examples of parsing string expressions to function objects `fn` corresponding to the expressions. 

``` python 
# Import the autodiffcc package 
>>> import autodiffcc as ad
>>> from autodiffcc.parser import expressioncc

>>> x = ad.AD(2, der = [1, 0])
>>> y = ad.AD(3, der = [0, 1])

# Use expressioncc to parse a normal expression
>>> fn = expressioncc('x+y+1', ['x', 'y']).get_fn()
>>> print(fn(x,y).val)
6.0
>>> print(fn(x,y).der)
[1. 1.]

# Use expressioncc to parse an equation (left - right)
>>> fn = expressioncc('x = -y-1', ['x', 'y']).get_fn()
>>> print(fn(x,y).val)
6.0
>>> print(fn(x,y).der)
[1. 1.]
```

## Resources


We would like to acknowledge Glenfletcher as his contribution was used in our package.
* Glenfletcher 2014. , DOI: https://github.com/glenfletcher/Equation/tree/master/Equation 




%package help
Summary:	Development documents and examples for AutoDiffCC
Provides:	python3-AutoDiffCC-doc
%description help

<img align="right" width="100" height="100" src="https://user-images.githubusercontent.com/43005886/70481100-8919f480-1aaf-11ea-8b0e-f8a8bde5c6ef.png">

<img align="right" width="150" height="100" src="https://user-images.githubusercontent.com/43005886/70541950-ed7f9700-1b35-11ea-8148-1add138908bf.png">

[![Build Status](https://travis-ci.org/Crimson-Computing/cs207-FinalProject.svg?branch=master)](https://travis-ci.org/Crimson-Computing/cs207-FinalProject)

[![codecov](https://codecov.io/gh/Crimson-Computing/cs207-FinalProject/branch/master/graph/badge.svg)](https://codecov.io/gh/Crimson-Computing/cs207-FinalProject)




Click [here](https://github.com/Crimson-Computing/cs207-FinalProject/blob/master/docs/documentation.md) to see full documentation


## Final Project - AutoDiffCC Python Package
## CS207: Systems Development for Computational Science in Fall 2019 
#### Group 22
- Alex Spiride
- Maja Garbulinska
- Matthew Finney
- Zhiying Xu

### Overview 

With the evolution of science and the growing computational possibilities, differentiation plays a critical role in a wide range of scientific and industrial applications of computer science. However, the precise computation of symbolic derivatives is computationally expensive, and not even possible in all situations, whereas the finite differencing method is not always accurate or stable. Automatic differentiation, however, provides a computationally efficient way to calculate derivatives, particularly of complex functions, for applications where accuracy and performance at scale are important.

Our package **AutoDiffCC** provides is an easy to use package that computes derivates of scalar and vector functions using the concept of automatic differentation. 

We invite you to take a look at our repo and use **AutoDiffCC**!

### Installation Guide

AutoDiffCC supports package installation via `pip`. Users can install the package in the command line with the following command.

```buildoutcfg
pip install autodiffcc
```

### How To Use 
To use **AutoDiffCC** you first have to import it. If you already have it installed, you can do it by just running:

``` python 
# Import the autodiffcc package
>>> import autodiffcc as ad 
```

#### Basic Applications
There are several ways in which you can take advantage of **AutoDiffCC**. Below we present some examples.

###### Example 1  
A simple example using overloaded operators is described below. If you would like to evaluate ``f = x * x`` at ``x = 2``, first initiate an AD object ``x`` with ``x = ad.AD(val=2.0, der=1.0)``, where ``2`` is the value and ``1`` is the derivative. Then simply define your function ``f = x * x`` and enjoy the results. You can see this example implemented below. 

``` python 
# Overload basic arithmetic operations
>>> x = ad.AD(val=2.0, der=1.0) 
>>> f = x * x
>>> print(f.val, f.der)
4.0 4.0
```

Alternatively, you can just proceed as follows: 

``` python 
>>> def f(x):
>>>   return x*x
>>> dfdx = differentiate(f)
>>> dfdx(x=2.0)
4.0 # this is the derivative value at x=2 
```

###### Example 2

To use more complex function like cos(x) follow this example using our built-in module ADmath: 

``` python 
>>> x = AD(val=3.0, der=1.0)
>>> ADmath.cos(x) 
(array(-0.9899924966004454), array(-0.1411200080598672))
 ```    

 Again, you can also do: 

``` python 
>>> def f(x):
>>>   return ADmath.cos(x) 
>>> dfdx = differentiate(f)
>>> dfdx( x=3.0)
-0.1411200080598672 # this is the derivative value evaluated at 3.0.
```


#### Offered Extentions
##### Root Finding
Our package offers three root finding methods. The bisection method, the newton-fourier method and the newton-raphson method.

###### Example 1 

``` python RootFinder example for the bisection method 
# Import the autodiffcc package
>>> import autodiffcc as ad

# Find the foot of a function with two variables using the bisection method

>>> def f(x, y):
>>>    return x + y - 100
>>> interval = [[1, 2], [3, 100]]
>>> my_root = ad.find_root(function=f, method='bisection', interval=interval)
>>> print(my_root)
[1.999999999999993, 98.0]
```

###### Example 2

``` python
# Import the autodiffcc package
>>> import autodiffcc as ad
    >>> interval = [[3, -3], [3, -3]]
    >>> my_root = ad.find_root(lambda x, y: (2 * x + y - 2, y + 2), interval=interval, method='newton-fourier', max_iter=150)
    >>> print(my_root)
    [ 2. -2.]
```

###### Example 3

``` python
# Import the autodiffcc package
>>> import autodiffcc as ad
    >>> def f1var(x):
    >>>     return (x + 2) * (x - 3)

    >>> my_root = ad.find_root(function=f1var, method='newton', start_values=1, threshold=1e-8)
    >>> print(my_root)
    3.
```

##### Expression parsing

###### Example 1

Another extension we offer is expression parsing. The below are two examples of parsing string expressions to function objects `fn` corresponding to the expressions. 

``` python 
# Import the autodiffcc package 
>>> import autodiffcc as ad
>>> from autodiffcc.parser import expressioncc

>>> x = ad.AD(2, der = [1, 0])
>>> y = ad.AD(3, der = [0, 1])

# Use expressioncc to parse a normal expression
>>> fn = expressioncc('x+y+1', ['x', 'y']).get_fn()
>>> print(fn(x,y).val)
6.0
>>> print(fn(x,y).der)
[1. 1.]

# Use expressioncc to parse an equation (left - right)
>>> fn = expressioncc('x = -y-1', ['x', 'y']).get_fn()
>>> print(fn(x,y).val)
6.0
>>> print(fn(x,y).der)
[1. 1.]
```

## Resources


We would like to acknowledge Glenfletcher as his contribution was used in our package.
* Glenfletcher 2014. , DOI: https://github.com/glenfletcher/Equation/tree/master/Equation 




%prep
%autosetup -n AutoDiffCC-1.1.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-AutoDiffCC -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.1-1
- Package Spec generated