summaryrefslogtreecommitdiff
path: root/python-autodora.spec
blob: 240f84ca2b883359a71c3887718e3027ef9917a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
%global _empty_manifest_terminate_build 0
Name:		python-autodora
Version:	0.4.1
Release:	1
Summary:	Automate experiments and explore your data.
License:	MIT
URL:		http://github.com/samuelkolb/autodora
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/80/a4/5561c40dc3b4796bde4962cfd35ed0526de0ddc798b6d84ba63a1bf98431/autodora-0.4.1.tar.gz
BuildArch:	noarch

Requires:	python3-matplotlib
Requires:	python3-peewee
Requires:	python3-pebble
Requires:	python3-numpy
Requires:	python3-temporary
Requires:	python3-telegram-bot

%description
# autodora [![Build Status](https://travis-ci.org/samuelkolb/autodora.svg?branch=master)](https://travis-ci.org/samuelkolb/autodora)
autodora is a framework to help you:
1. setup experiments
2. running them for multiple parameters
3. storing the results
4. exploring the results

The aim of this package is to make these steps as easy and integrated as possible.

## Installation

    pip install autodora
    
Experiments can be tracked using observers. Specialized observers may require optional packages to function that are
not included by default (because you might not need them).

### Telegram observer

    pip install autodora[telegram]
    
In order to use the observer you have to set the environment variables `TELEGRAM_BOT_TOKEN` and `TELEGRAM_CHAT_ID`.

**Example usage**

    export TELEGRAM_BOT_TOKEN="<your-bot-token>"
    export TELEGRAM_CHAT_ID="<your-chat-id>"
    pytest


## Using autodora
Consider the problem of computing the product of two numbers given in a string like this: `"0.1 x 0.3"`.
The heavy-lifting of this computation is performed by a function `multiply`:

    def multiply(x, y):
        return x * y
        
### Setting up
We start off by describing the experiment in a file called `product_experiment.py`:

    class ProductExperiment(Experiment):
        input = Parameter(str, "0.0x0.0", "The input values to be multiplied (e.g. 0.2x10)")
        product = Result(float, description="Computed product")
    
        @derived(cache=True)
        def derived_x(self):
            return float(self.get(self.input).split("x")[0])
    
        @derived(cache=True)
        def derived_y(self):
            return float(self.get(self.input).split("x")[1])
    
        def run_internal(self):
            x, y = self.get("x"), self.get("y")
            result = multiply(x, y)
            self["product"] = result
    
    
    ProductExperiment.enable_cli()



#### Describing parameters

        ...
        input = Parameter(str, "0.0x0.0", "The input values to be multiplied (e.g. 0.2x10)")
        ...

The first step is to describe the parameters of the experiment, the name is taken from the variable you assign them to,
other than that have to specify the type and optionally a default value and description of the parameter.

While this is a powerful and easy way to set up parameters, you can also add them in the constructor:

    class ProductExperiment(Experiment):
        def __init__(self, group, storage=None, identifier=None):
            super().__init__(group, storage=None, identifier=None)
            self.parameters.add_parameter("complicated.name", datetime, None, "Description")


#### Describing results

        ...
        product = Result(float, description="Computed product")
        ...

Similar to the parameters, we specify expected results. The Result class is identical to the Parameter class in all but
name, it only serves to indicate that you are trying to assign a result.


#### Computing derived features

        ...
        @derived(cache=True)
        def derived_x(self):
            return float(self.get(self.input).split("x")[0])
    
        @derived(cache=True)
        def derived_y(self):
            return float(self.get(self.input).split("x")[1])
        ...
   
Derived features are computed from other values (or complex computation chains) and can be marked for caching to avoid
computing them over and over again: when the experiment is saved to storage, those features will be saved with the
experiment.

You can build derived features using the derived decorator, which internally builds a `Derived object` and saves it in
the `experiment.derived_callbacks (Dict[str, Derived])` dictionary. Again, you can do this in the constructor, too.
If the decorated function is called `derived_<name>`, it will be shortened to just `<name>`.

Derived features can be accessed by calling `experiment["name"]` or `experiment[""derived.name"]` to disambiguate
if there are other parameters or results with the same name.


#### Running the experiment

        ...
        def run_internal(self):
            x, y = self.get("x"), self.get("y")
            result = multiply(x, y)
            self["product"] = result
        ...

When `experiment.run()` is called, it internally calls the `run_internal` method, which is responsible for running the
actual experiment. In this case, it fetches the (derived) parameters, computes the result and stores it.


#### Enabling the command line interface

    ...
    ProductExperiment.enable_cli()
    
The `enable_cli` class method, not surprisingly, enables the current file to be run from command line.
This enables several key features:
- Making the experiment executable by command line (for internal and external use)
- Allowing you to manage (plot, list, ...) experiments of this type from command line

### Specifying trajectories

TODO




%package -n python3-autodora
Summary:	Automate experiments and explore your data.
Provides:	python-autodora
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-autodora
# autodora [![Build Status](https://travis-ci.org/samuelkolb/autodora.svg?branch=master)](https://travis-ci.org/samuelkolb/autodora)
autodora is a framework to help you:
1. setup experiments
2. running them for multiple parameters
3. storing the results
4. exploring the results

The aim of this package is to make these steps as easy and integrated as possible.

## Installation

    pip install autodora
    
Experiments can be tracked using observers. Specialized observers may require optional packages to function that are
not included by default (because you might not need them).

### Telegram observer

    pip install autodora[telegram]
    
In order to use the observer you have to set the environment variables `TELEGRAM_BOT_TOKEN` and `TELEGRAM_CHAT_ID`.

**Example usage**

    export TELEGRAM_BOT_TOKEN="<your-bot-token>"
    export TELEGRAM_CHAT_ID="<your-chat-id>"
    pytest


## Using autodora
Consider the problem of computing the product of two numbers given in a string like this: `"0.1 x 0.3"`.
The heavy-lifting of this computation is performed by a function `multiply`:

    def multiply(x, y):
        return x * y
        
### Setting up
We start off by describing the experiment in a file called `product_experiment.py`:

    class ProductExperiment(Experiment):
        input = Parameter(str, "0.0x0.0", "The input values to be multiplied (e.g. 0.2x10)")
        product = Result(float, description="Computed product")
    
        @derived(cache=True)
        def derived_x(self):
            return float(self.get(self.input).split("x")[0])
    
        @derived(cache=True)
        def derived_y(self):
            return float(self.get(self.input).split("x")[1])
    
        def run_internal(self):
            x, y = self.get("x"), self.get("y")
            result = multiply(x, y)
            self["product"] = result
    
    
    ProductExperiment.enable_cli()



#### Describing parameters

        ...
        input = Parameter(str, "0.0x0.0", "The input values to be multiplied (e.g. 0.2x10)")
        ...

The first step is to describe the parameters of the experiment, the name is taken from the variable you assign them to,
other than that have to specify the type and optionally a default value and description of the parameter.

While this is a powerful and easy way to set up parameters, you can also add them in the constructor:

    class ProductExperiment(Experiment):
        def __init__(self, group, storage=None, identifier=None):
            super().__init__(group, storage=None, identifier=None)
            self.parameters.add_parameter("complicated.name", datetime, None, "Description")


#### Describing results

        ...
        product = Result(float, description="Computed product")
        ...

Similar to the parameters, we specify expected results. The Result class is identical to the Parameter class in all but
name, it only serves to indicate that you are trying to assign a result.


#### Computing derived features

        ...
        @derived(cache=True)
        def derived_x(self):
            return float(self.get(self.input).split("x")[0])
    
        @derived(cache=True)
        def derived_y(self):
            return float(self.get(self.input).split("x")[1])
        ...
   
Derived features are computed from other values (or complex computation chains) and can be marked for caching to avoid
computing them over and over again: when the experiment is saved to storage, those features will be saved with the
experiment.

You can build derived features using the derived decorator, which internally builds a `Derived object` and saves it in
the `experiment.derived_callbacks (Dict[str, Derived])` dictionary. Again, you can do this in the constructor, too.
If the decorated function is called `derived_<name>`, it will be shortened to just `<name>`.

Derived features can be accessed by calling `experiment["name"]` or `experiment[""derived.name"]` to disambiguate
if there are other parameters or results with the same name.


#### Running the experiment

        ...
        def run_internal(self):
            x, y = self.get("x"), self.get("y")
            result = multiply(x, y)
            self["product"] = result
        ...

When `experiment.run()` is called, it internally calls the `run_internal` method, which is responsible for running the
actual experiment. In this case, it fetches the (derived) parameters, computes the result and stores it.


#### Enabling the command line interface

    ...
    ProductExperiment.enable_cli()
    
The `enable_cli` class method, not surprisingly, enables the current file to be run from command line.
This enables several key features:
- Making the experiment executable by command line (for internal and external use)
- Allowing you to manage (plot, list, ...) experiments of this type from command line

### Specifying trajectories

TODO




%package help
Summary:	Development documents and examples for autodora
Provides:	python3-autodora-doc
%description help
# autodora [![Build Status](https://travis-ci.org/samuelkolb/autodora.svg?branch=master)](https://travis-ci.org/samuelkolb/autodora)
autodora is a framework to help you:
1. setup experiments
2. running them for multiple parameters
3. storing the results
4. exploring the results

The aim of this package is to make these steps as easy and integrated as possible.

## Installation

    pip install autodora
    
Experiments can be tracked using observers. Specialized observers may require optional packages to function that are
not included by default (because you might not need them).

### Telegram observer

    pip install autodora[telegram]
    
In order to use the observer you have to set the environment variables `TELEGRAM_BOT_TOKEN` and `TELEGRAM_CHAT_ID`.

**Example usage**

    export TELEGRAM_BOT_TOKEN="<your-bot-token>"
    export TELEGRAM_CHAT_ID="<your-chat-id>"
    pytest


## Using autodora
Consider the problem of computing the product of two numbers given in a string like this: `"0.1 x 0.3"`.
The heavy-lifting of this computation is performed by a function `multiply`:

    def multiply(x, y):
        return x * y
        
### Setting up
We start off by describing the experiment in a file called `product_experiment.py`:

    class ProductExperiment(Experiment):
        input = Parameter(str, "0.0x0.0", "The input values to be multiplied (e.g. 0.2x10)")
        product = Result(float, description="Computed product")
    
        @derived(cache=True)
        def derived_x(self):
            return float(self.get(self.input).split("x")[0])
    
        @derived(cache=True)
        def derived_y(self):
            return float(self.get(self.input).split("x")[1])
    
        def run_internal(self):
            x, y = self.get("x"), self.get("y")
            result = multiply(x, y)
            self["product"] = result
    
    
    ProductExperiment.enable_cli()



#### Describing parameters

        ...
        input = Parameter(str, "0.0x0.0", "The input values to be multiplied (e.g. 0.2x10)")
        ...

The first step is to describe the parameters of the experiment, the name is taken from the variable you assign them to,
other than that have to specify the type and optionally a default value and description of the parameter.

While this is a powerful and easy way to set up parameters, you can also add them in the constructor:

    class ProductExperiment(Experiment):
        def __init__(self, group, storage=None, identifier=None):
            super().__init__(group, storage=None, identifier=None)
            self.parameters.add_parameter("complicated.name", datetime, None, "Description")


#### Describing results

        ...
        product = Result(float, description="Computed product")
        ...

Similar to the parameters, we specify expected results. The Result class is identical to the Parameter class in all but
name, it only serves to indicate that you are trying to assign a result.


#### Computing derived features

        ...
        @derived(cache=True)
        def derived_x(self):
            return float(self.get(self.input).split("x")[0])
    
        @derived(cache=True)
        def derived_y(self):
            return float(self.get(self.input).split("x")[1])
        ...
   
Derived features are computed from other values (or complex computation chains) and can be marked for caching to avoid
computing them over and over again: when the experiment is saved to storage, those features will be saved with the
experiment.

You can build derived features using the derived decorator, which internally builds a `Derived object` and saves it in
the `experiment.derived_callbacks (Dict[str, Derived])` dictionary. Again, you can do this in the constructor, too.
If the decorated function is called `derived_<name>`, it will be shortened to just `<name>`.

Derived features can be accessed by calling `experiment["name"]` or `experiment[""derived.name"]` to disambiguate
if there are other parameters or results with the same name.


#### Running the experiment

        ...
        def run_internal(self):
            x, y = self.get("x"), self.get("y")
            result = multiply(x, y)
            self["product"] = result
        ...

When `experiment.run()` is called, it internally calls the `run_internal` method, which is responsible for running the
actual experiment. In this case, it fetches the (derived) parameters, computes the result and stores it.


#### Enabling the command line interface

    ...
    ProductExperiment.enable_cli()
    
The `enable_cli` class method, not surprisingly, enables the current file to be run from command line.
This enables several key features:
- Making the experiment executable by command line (for internal and external use)
- Allowing you to manage (plot, list, ...) experiments of this type from command line

### Specifying trajectories

TODO




%prep
%autosetup -n autodora-0.4.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-autodora -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed May 17 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.1-1
- Package Spec generated