summaryrefslogtreecommitdiff
path: root/python-autonlp.spec
blob: 6088e7e199fd578b244f5a0afffc83b1c325dade (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
%global _empty_manifest_terminate_build 0
Name:		python-autonlp
Version:	0.3.7
Release:	1
Summary:	HuggingFace/AutoNLP
License:	Apache 2.0
URL:		https://github.com/huggingface/autonlp
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/be/d3/e9843aa60363a0f21f5d02bbd71973694d74a75c187d9d67831af3f59cc4/autonlp-0.3.7.tar.gz
BuildArch:	noarch

Requires:	python3-loguru
Requires:	python3-requests
Requires:	python3-tqdm
Requires:	python3-prettytable
Requires:	python3-huggingface-hub
Requires:	python3-datasets
Requires:	python3-loguru
Requires:	python3-requests
Requires:	python3-tqdm
Requires:	python3-prettytable
Requires:	python3-huggingface-hub
Requires:	python3-datasets
Requires:	python3-black
Requires:	python3-isort
Requires:	python3-flake8
Requires:	python3-pytest
Requires:	python3-loguru
Requires:	python3-requests
Requires:	python3-tqdm
Requires:	python3-prettytable
Requires:	python3-huggingface-hub
Requires:	python3-datasets
Requires:	python3-recommonmark
Requires:	python3-sphinx
Requires:	python3-sphinx-markdown-tables
Requires:	python3-sphinx-rtd-theme
Requires:	python3-sphinx-copybutton
Requires:	python3-loguru
Requires:	python3-requests
Requires:	python3-tqdm
Requires:	python3-prettytable
Requires:	python3-huggingface-hub
Requires:	python3-datasets
Requires:	python3-black
Requires:	python3-isort
Requires:	python3-flake8

%description
# 🤗 AutoNLP

AutoNLP: faster and easier training and deployments of SOTA NLP models

## Installation

You can Install AutoNLP python package via PIP. Please note you will need python >= 3.7 for AutoNLP to work properly.

    pip install autonlp

Please make sure that you have git lfs installed. Check out the instructions here: https://github.com/git-lfs/git-lfs/wiki/Installation

## Quick start - in the terminal

Please take a look at [AutoNLP Documentation](https://huggingface.co/docs/autonlp/) for a list of supported tasks and languages.

Note:
AutoNLP is currently in beta release. To participate in the beta, just go to https://huggingface.co/autonlp and apply 🤗

First, create a project:

```bash
autonlp login --api-key YOUR_HUGGING_FACE_API_TOKEN
autonlp create_project --name sentiment_detection --language en --task binary_classification --max_models 5
```

Upload files and start the training. You need a training and a validation split. Only CSV files are supported at the moment.
```bash
# Train split
autonlp upload --project sentiment_detection --split train \
               --col_mapping review:text,sentiment:target \
               --files ~/datasets/train.csv
# Validation split
autonlp upload --project sentiment_detection --split valid \
               --col_mapping review:text,sentiment:target \
               --files ~/datasets/valid.csv
```

Once the files are uploaded, you can start training the model:
```bash
autonlp train --project sentiment_detection
```

Monitor the progress of your project.
```bash
# Project progress
autonlp project_info --name sentiment_detection
# Model metrics
autonlp metrics --project PROJECT_ID
```

## Quick start - Python API

Setting up:
```python
from autonlp import AutoNLP
client = AutoNLP()
client.login(token="YOUR_HUGGING_FACE_API_TOKEN")
```

Creating a project and uploading files to it:
```python
project = client.create_project(name="sentiment_detection", task="binary_classification", language="en", max_models=5)
project.upload(
    filepaths=["/path/to/train.csv"],
    split="train",
    col_mapping={
        "review": "text",
        "sentiment": "target",
    })

# also upload a validation with split="valid"
```

Start the training of your models:
```python
project.train()
```

To monitor the progress of your training:
```python
project.refresh()
print(project)
```

After the training of your models has succeeded, you can retrieve the metrics for each model and test them with the 🤗 Inference API:

```python
client.predict(project="sentiment_detection", model_id=42, input_text="i love autonlp")
```

or use command line:

```bash
autonlp predict --project sentiment_detection --model_id 42 --sentence "i love autonlp"
```

## How much do I have to pay?

It's difficult to provide an exact answer to this question, however, we have an estimator that might help you.
Just enter the number of samples and language and you will get an estimate. Please keep in mind that this is just an estimate and can easily over-estimate or under-estimate (we are actively working on this).

```bash
autonlp estimate --num_train_samples 10000 --project_name sentiment_detection
```




%package -n python3-autonlp
Summary:	HuggingFace/AutoNLP
Provides:	python-autonlp
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-autonlp
# 🤗 AutoNLP

AutoNLP: faster and easier training and deployments of SOTA NLP models

## Installation

You can Install AutoNLP python package via PIP. Please note you will need python >= 3.7 for AutoNLP to work properly.

    pip install autonlp

Please make sure that you have git lfs installed. Check out the instructions here: https://github.com/git-lfs/git-lfs/wiki/Installation

## Quick start - in the terminal

Please take a look at [AutoNLP Documentation](https://huggingface.co/docs/autonlp/) for a list of supported tasks and languages.

Note:
AutoNLP is currently in beta release. To participate in the beta, just go to https://huggingface.co/autonlp and apply 🤗

First, create a project:

```bash
autonlp login --api-key YOUR_HUGGING_FACE_API_TOKEN
autonlp create_project --name sentiment_detection --language en --task binary_classification --max_models 5
```

Upload files and start the training. You need a training and a validation split. Only CSV files are supported at the moment.
```bash
# Train split
autonlp upload --project sentiment_detection --split train \
               --col_mapping review:text,sentiment:target \
               --files ~/datasets/train.csv
# Validation split
autonlp upload --project sentiment_detection --split valid \
               --col_mapping review:text,sentiment:target \
               --files ~/datasets/valid.csv
```

Once the files are uploaded, you can start training the model:
```bash
autonlp train --project sentiment_detection
```

Monitor the progress of your project.
```bash
# Project progress
autonlp project_info --name sentiment_detection
# Model metrics
autonlp metrics --project PROJECT_ID
```

## Quick start - Python API

Setting up:
```python
from autonlp import AutoNLP
client = AutoNLP()
client.login(token="YOUR_HUGGING_FACE_API_TOKEN")
```

Creating a project and uploading files to it:
```python
project = client.create_project(name="sentiment_detection", task="binary_classification", language="en", max_models=5)
project.upload(
    filepaths=["/path/to/train.csv"],
    split="train",
    col_mapping={
        "review": "text",
        "sentiment": "target",
    })

# also upload a validation with split="valid"
```

Start the training of your models:
```python
project.train()
```

To monitor the progress of your training:
```python
project.refresh()
print(project)
```

After the training of your models has succeeded, you can retrieve the metrics for each model and test them with the 🤗 Inference API:

```python
client.predict(project="sentiment_detection", model_id=42, input_text="i love autonlp")
```

or use command line:

```bash
autonlp predict --project sentiment_detection --model_id 42 --sentence "i love autonlp"
```

## How much do I have to pay?

It's difficult to provide an exact answer to this question, however, we have an estimator that might help you.
Just enter the number of samples and language and you will get an estimate. Please keep in mind that this is just an estimate and can easily over-estimate or under-estimate (we are actively working on this).

```bash
autonlp estimate --num_train_samples 10000 --project_name sentiment_detection
```




%package help
Summary:	Development documents and examples for autonlp
Provides:	python3-autonlp-doc
%description help
# 🤗 AutoNLP

AutoNLP: faster and easier training and deployments of SOTA NLP models

## Installation

You can Install AutoNLP python package via PIP. Please note you will need python >= 3.7 for AutoNLP to work properly.

    pip install autonlp

Please make sure that you have git lfs installed. Check out the instructions here: https://github.com/git-lfs/git-lfs/wiki/Installation

## Quick start - in the terminal

Please take a look at [AutoNLP Documentation](https://huggingface.co/docs/autonlp/) for a list of supported tasks and languages.

Note:
AutoNLP is currently in beta release. To participate in the beta, just go to https://huggingface.co/autonlp and apply 🤗

First, create a project:

```bash
autonlp login --api-key YOUR_HUGGING_FACE_API_TOKEN
autonlp create_project --name sentiment_detection --language en --task binary_classification --max_models 5
```

Upload files and start the training. You need a training and a validation split. Only CSV files are supported at the moment.
```bash
# Train split
autonlp upload --project sentiment_detection --split train \
               --col_mapping review:text,sentiment:target \
               --files ~/datasets/train.csv
# Validation split
autonlp upload --project sentiment_detection --split valid \
               --col_mapping review:text,sentiment:target \
               --files ~/datasets/valid.csv
```

Once the files are uploaded, you can start training the model:
```bash
autonlp train --project sentiment_detection
```

Monitor the progress of your project.
```bash
# Project progress
autonlp project_info --name sentiment_detection
# Model metrics
autonlp metrics --project PROJECT_ID
```

## Quick start - Python API

Setting up:
```python
from autonlp import AutoNLP
client = AutoNLP()
client.login(token="YOUR_HUGGING_FACE_API_TOKEN")
```

Creating a project and uploading files to it:
```python
project = client.create_project(name="sentiment_detection", task="binary_classification", language="en", max_models=5)
project.upload(
    filepaths=["/path/to/train.csv"],
    split="train",
    col_mapping={
        "review": "text",
        "sentiment": "target",
    })

# also upload a validation with split="valid"
```

Start the training of your models:
```python
project.train()
```

To monitor the progress of your training:
```python
project.refresh()
print(project)
```

After the training of your models has succeeded, you can retrieve the metrics for each model and test them with the 🤗 Inference API:

```python
client.predict(project="sentiment_detection", model_id=42, input_text="i love autonlp")
```

or use command line:

```bash
autonlp predict --project sentiment_detection --model_id 42 --sentence "i love autonlp"
```

## How much do I have to pay?

It's difficult to provide an exact answer to this question, however, we have an estimator that might help you.
Just enter the number of samples and language and you will get an estimate. Please keep in mind that this is just an estimate and can easily over-estimate or under-estimate (we are actively working on this).

```bash
autonlp estimate --num_train_samples 10000 --project_name sentiment_detection
```




%prep
%autosetup -n autonlp-0.3.7

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-autonlp -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.7-1
- Package Spec generated