1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
|
%global _empty_manifest_terminate_build 0
Name: python-autoxgb
Version: 0.2.2
Release: 1
Summary: autoxgb: tuning xgboost with optuna
License: Apache 2.0
URL: https://github.com/abhishekkrthakur/autoxgb
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/5f/7f/d52884a7044f16ea4dfd010f8334a25939684e69988156ece7f067747b3a/autoxgb-0.2.2.tar.gz
BuildArch: noarch
Requires: python3-fastapi
Requires: python3-loguru
Requires: python3-numpy
Requires: python3-optuna
Requires: python3-pyarrow
Requires: python3-pydantic
Requires: python3-joblib
Requires: python3-pandas
Requires: python3-scikit-learn
Requires: python3-uvicorn
Requires: python3-xgboost
%description
# AutoXGB
XGBoost + Optuna: no brainer
- auto train xgboost directly from CSV files
- auto tune xgboost using optuna
- auto serve best xgboot model using fastapi
NOTE: PRs are currently not accepted. If there are issues/problems, please create an issue.
# Installation
Install using pip
pip install autoxgb
# Usage
Training a model using AutoXGB is a piece of cake. All you need is some tabular data.
## Parameters
```python
###############################################################################
### required parameters
###############################################################################
# path to training data
train_filename = "data_samples/binary_classification.csv"
# path to output folder to store artifacts
output = "output"
###############################################################################
### optional parameters
###############################################################################
# path to test data. if specified, the model will be evaluated on the test data
# and test_predictions.csv will be saved to the output folder
# if not specified, only OOF predictions will be saved
# test_filename = "test.csv"
test_filename = None
# task: classification or regression
# if not specified, the task will be inferred automatically
# task = "classification"
# task = "regression"
task = None
# an id column
# if not specified, the id column will be generated automatically with the name `id`
# idx = "id"
idx = None
# target columns are list of strings
# if not specified, the target column be assumed to be named `target`
# and the problem will be treated as one of: binary classification, multiclass classification,
# or single column regression
# targets = ["target"]
# targets = ["target1", "target2"]
targets = ["income"]
# features columns are list of strings
# if not specified, all columns except `id`, `targets` & `kfold` columns will be used
# features = ["col1", "col2"]
features = None
# categorical_features are list of strings
# if not specified, categorical columns will be inferred automatically
# categorical_features = ["col1", "col2"]
categorical_features = None
# use_gpu is boolean
# if not specified, GPU is not used
# use_gpu = True
# use_gpu = False
use_gpu = True
# number of folds to use for cross-validation
# default is 5
num_folds = 5
# random seed for reproducibility
# default is 42
seed = 42
# number of optuna trials to run
# default is 1000
# num_trials = 1000
num_trials = 100
# time_limit for optuna trials in seconds
# if not specified, timeout is not set and all trials are run
# time_limit = None
time_limit = 360
# if fast is set to True, the hyperparameter tuning will use only one fold
# however, the model will be trained on all folds in the end
# to generate OOF predictions and test predictions
# default is False
# fast = False
fast = False
```
# Python API
To train a new model, you can run:
```python
from autoxgb import AutoXGB
# required parameters:
train_filename = "data_samples/binary_classification.csv"
output = "output"
# optional parameters
test_filename = None
task = None
idx = None
targets = ["income"]
features = None
categorical_features = None
use_gpu = True
num_folds = 5
seed = 42
num_trials = 100
time_limit = 360
fast = False
# Now its time to train the model!
axgb = AutoXGB(
train_filename=train_filename,
output=output,
test_filename=test_filename,
task=task,
idx=idx,
targets=targets,
features=features,
categorical_features=categorical_features,
use_gpu=use_gpu,
num_folds=num_folds,
seed=seed,
num_trials=num_trials,
time_limit=time_limit,
fast=fast,
)
axgb.train()
```
# CLI
Train the model using the `autoxgb train` command. The parameters are same as above.
```
autoxgb train \
--train_filename datasets/30train.csv \
--output outputs/30days \
--test_filename datasets/30test.csv \
--use_gpu
```
You can also serve the trained model using the `autoxgb serve` command.
```bash
autoxgb serve --model_path outputs/mll --host 0.0.0.0 --debug
```
To know more about a command, run:
`autoxgb <command> --help`
```
autoxgb train --help
usage: autoxgb <command> [<args>] train [-h] --train_filename TRAIN_FILENAME [--test_filename TEST_FILENAME] --output
OUTPUT [--task {classification,regression}] [--idx IDX] [--targets TARGETS]
[--num_folds NUM_FOLDS] [--features FEATURES] [--use_gpu] [--fast]
[--seed SEED] [--time_limit TIME_LIMIT]
optional arguments:
-h, --help show this help message and exit
--train_filename TRAIN_FILENAME
Path to training file
--test_filename TEST_FILENAME
Path to test file
--output OUTPUT Path to output directory
--task {classification,regression}
User defined task type
--idx IDX ID column
--targets TARGETS Target column(s). If there are multiple targets, separate by ';'
--num_folds NUM_FOLDS
Number of folds to use
--features FEATURES Features to use, separated by ';'
--use_gpu Whether to use GPU for training
--fast Whether to use fast mode for tuning params. Only one fold will be used if fast mode is set
--seed SEED Random seed
--time_limit TIME_LIMIT
Time limit for optimization
```
%package -n python3-autoxgb
Summary: autoxgb: tuning xgboost with optuna
Provides: python-autoxgb
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-autoxgb
# AutoXGB
XGBoost + Optuna: no brainer
- auto train xgboost directly from CSV files
- auto tune xgboost using optuna
- auto serve best xgboot model using fastapi
NOTE: PRs are currently not accepted. If there are issues/problems, please create an issue.
# Installation
Install using pip
pip install autoxgb
# Usage
Training a model using AutoXGB is a piece of cake. All you need is some tabular data.
## Parameters
```python
###############################################################################
### required parameters
###############################################################################
# path to training data
train_filename = "data_samples/binary_classification.csv"
# path to output folder to store artifacts
output = "output"
###############################################################################
### optional parameters
###############################################################################
# path to test data. if specified, the model will be evaluated on the test data
# and test_predictions.csv will be saved to the output folder
# if not specified, only OOF predictions will be saved
# test_filename = "test.csv"
test_filename = None
# task: classification or regression
# if not specified, the task will be inferred automatically
# task = "classification"
# task = "regression"
task = None
# an id column
# if not specified, the id column will be generated automatically with the name `id`
# idx = "id"
idx = None
# target columns are list of strings
# if not specified, the target column be assumed to be named `target`
# and the problem will be treated as one of: binary classification, multiclass classification,
# or single column regression
# targets = ["target"]
# targets = ["target1", "target2"]
targets = ["income"]
# features columns are list of strings
# if not specified, all columns except `id`, `targets` & `kfold` columns will be used
# features = ["col1", "col2"]
features = None
# categorical_features are list of strings
# if not specified, categorical columns will be inferred automatically
# categorical_features = ["col1", "col2"]
categorical_features = None
# use_gpu is boolean
# if not specified, GPU is not used
# use_gpu = True
# use_gpu = False
use_gpu = True
# number of folds to use for cross-validation
# default is 5
num_folds = 5
# random seed for reproducibility
# default is 42
seed = 42
# number of optuna trials to run
# default is 1000
# num_trials = 1000
num_trials = 100
# time_limit for optuna trials in seconds
# if not specified, timeout is not set and all trials are run
# time_limit = None
time_limit = 360
# if fast is set to True, the hyperparameter tuning will use only one fold
# however, the model will be trained on all folds in the end
# to generate OOF predictions and test predictions
# default is False
# fast = False
fast = False
```
# Python API
To train a new model, you can run:
```python
from autoxgb import AutoXGB
# required parameters:
train_filename = "data_samples/binary_classification.csv"
output = "output"
# optional parameters
test_filename = None
task = None
idx = None
targets = ["income"]
features = None
categorical_features = None
use_gpu = True
num_folds = 5
seed = 42
num_trials = 100
time_limit = 360
fast = False
# Now its time to train the model!
axgb = AutoXGB(
train_filename=train_filename,
output=output,
test_filename=test_filename,
task=task,
idx=idx,
targets=targets,
features=features,
categorical_features=categorical_features,
use_gpu=use_gpu,
num_folds=num_folds,
seed=seed,
num_trials=num_trials,
time_limit=time_limit,
fast=fast,
)
axgb.train()
```
# CLI
Train the model using the `autoxgb train` command. The parameters are same as above.
```
autoxgb train \
--train_filename datasets/30train.csv \
--output outputs/30days \
--test_filename datasets/30test.csv \
--use_gpu
```
You can also serve the trained model using the `autoxgb serve` command.
```bash
autoxgb serve --model_path outputs/mll --host 0.0.0.0 --debug
```
To know more about a command, run:
`autoxgb <command> --help`
```
autoxgb train --help
usage: autoxgb <command> [<args>] train [-h] --train_filename TRAIN_FILENAME [--test_filename TEST_FILENAME] --output
OUTPUT [--task {classification,regression}] [--idx IDX] [--targets TARGETS]
[--num_folds NUM_FOLDS] [--features FEATURES] [--use_gpu] [--fast]
[--seed SEED] [--time_limit TIME_LIMIT]
optional arguments:
-h, --help show this help message and exit
--train_filename TRAIN_FILENAME
Path to training file
--test_filename TEST_FILENAME
Path to test file
--output OUTPUT Path to output directory
--task {classification,regression}
User defined task type
--idx IDX ID column
--targets TARGETS Target column(s). If there are multiple targets, separate by ';'
--num_folds NUM_FOLDS
Number of folds to use
--features FEATURES Features to use, separated by ';'
--use_gpu Whether to use GPU for training
--fast Whether to use fast mode for tuning params. Only one fold will be used if fast mode is set
--seed SEED Random seed
--time_limit TIME_LIMIT
Time limit for optimization
```
%package help
Summary: Development documents and examples for autoxgb
Provides: python3-autoxgb-doc
%description help
# AutoXGB
XGBoost + Optuna: no brainer
- auto train xgboost directly from CSV files
- auto tune xgboost using optuna
- auto serve best xgboot model using fastapi
NOTE: PRs are currently not accepted. If there are issues/problems, please create an issue.
# Installation
Install using pip
pip install autoxgb
# Usage
Training a model using AutoXGB is a piece of cake. All you need is some tabular data.
## Parameters
```python
###############################################################################
### required parameters
###############################################################################
# path to training data
train_filename = "data_samples/binary_classification.csv"
# path to output folder to store artifacts
output = "output"
###############################################################################
### optional parameters
###############################################################################
# path to test data. if specified, the model will be evaluated on the test data
# and test_predictions.csv will be saved to the output folder
# if not specified, only OOF predictions will be saved
# test_filename = "test.csv"
test_filename = None
# task: classification or regression
# if not specified, the task will be inferred automatically
# task = "classification"
# task = "regression"
task = None
# an id column
# if not specified, the id column will be generated automatically with the name `id`
# idx = "id"
idx = None
# target columns are list of strings
# if not specified, the target column be assumed to be named `target`
# and the problem will be treated as one of: binary classification, multiclass classification,
# or single column regression
# targets = ["target"]
# targets = ["target1", "target2"]
targets = ["income"]
# features columns are list of strings
# if not specified, all columns except `id`, `targets` & `kfold` columns will be used
# features = ["col1", "col2"]
features = None
# categorical_features are list of strings
# if not specified, categorical columns will be inferred automatically
# categorical_features = ["col1", "col2"]
categorical_features = None
# use_gpu is boolean
# if not specified, GPU is not used
# use_gpu = True
# use_gpu = False
use_gpu = True
# number of folds to use for cross-validation
# default is 5
num_folds = 5
# random seed for reproducibility
# default is 42
seed = 42
# number of optuna trials to run
# default is 1000
# num_trials = 1000
num_trials = 100
# time_limit for optuna trials in seconds
# if not specified, timeout is not set and all trials are run
# time_limit = None
time_limit = 360
# if fast is set to True, the hyperparameter tuning will use only one fold
# however, the model will be trained on all folds in the end
# to generate OOF predictions and test predictions
# default is False
# fast = False
fast = False
```
# Python API
To train a new model, you can run:
```python
from autoxgb import AutoXGB
# required parameters:
train_filename = "data_samples/binary_classification.csv"
output = "output"
# optional parameters
test_filename = None
task = None
idx = None
targets = ["income"]
features = None
categorical_features = None
use_gpu = True
num_folds = 5
seed = 42
num_trials = 100
time_limit = 360
fast = False
# Now its time to train the model!
axgb = AutoXGB(
train_filename=train_filename,
output=output,
test_filename=test_filename,
task=task,
idx=idx,
targets=targets,
features=features,
categorical_features=categorical_features,
use_gpu=use_gpu,
num_folds=num_folds,
seed=seed,
num_trials=num_trials,
time_limit=time_limit,
fast=fast,
)
axgb.train()
```
# CLI
Train the model using the `autoxgb train` command. The parameters are same as above.
```
autoxgb train \
--train_filename datasets/30train.csv \
--output outputs/30days \
--test_filename datasets/30test.csv \
--use_gpu
```
You can also serve the trained model using the `autoxgb serve` command.
```bash
autoxgb serve --model_path outputs/mll --host 0.0.0.0 --debug
```
To know more about a command, run:
`autoxgb <command> --help`
```
autoxgb train --help
usage: autoxgb <command> [<args>] train [-h] --train_filename TRAIN_FILENAME [--test_filename TEST_FILENAME] --output
OUTPUT [--task {classification,regression}] [--idx IDX] [--targets TARGETS]
[--num_folds NUM_FOLDS] [--features FEATURES] [--use_gpu] [--fast]
[--seed SEED] [--time_limit TIME_LIMIT]
optional arguments:
-h, --help show this help message and exit
--train_filename TRAIN_FILENAME
Path to training file
--test_filename TEST_FILENAME
Path to test file
--output OUTPUT Path to output directory
--task {classification,regression}
User defined task type
--idx IDX ID column
--targets TARGETS Target column(s). If there are multiple targets, separate by ';'
--num_folds NUM_FOLDS
Number of folds to use
--features FEATURES Features to use, separated by ';'
--use_gpu Whether to use GPU for training
--fast Whether to use fast mode for tuning params. Only one fold will be used if fast mode is set
--seed SEED Random seed
--time_limit TIME_LIMIT
Time limit for optimization
```
%prep
%autosetup -n autoxgb-0.2.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-autoxgb -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.2-1
- Package Spec generated
|