1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
|
%global _empty_manifest_terminate_build 0
Name: python-avro-validator
Version: 1.2.1
Release: 1
Summary: Pure python avro schema validator
License: MIT License
URL: https://github.com/leocalm/avro_validator
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/78/11/96eef6a6d3f8949d9fd21918cb0b023699b0408215c37734334bf83e1d56/avro_validator-1.2.1.tar.gz
BuildArch: noarch
Requires: python3-pytest
Requires: python3-coverage
Requires: python3-tox
Requires: python3-flake8
Requires: python3-hypothesis
Requires: python3-pytest-cov
Requires: python3-coveralls
Requires: python3-sphinx
Requires: python3-pallets-sphinx-themes
Requires: python3-sphinxcontrib-log-cabinet
Requires: python3-sphinx-issues
%description
[](https://github.com/leocalm/avro_validator/actions/workflows/ci.yaml)
[](https://avro-validator.readthedocs.io/en/latest/?badge=latest)
[](https://badge.fury.io/py/avro-validator)
[](https://pepy.tech/project/avro-validator)
[](https://coveralls.io/github/leocalm/avro_validator?branch=main)
# Avro Validator
A pure python avro schema validator.
The default avro library for Python provide validation of data against the schema, the problem is that the output of
this validation doesn't provide information about the error.
All you get is the `the datum is not an example of the schema` error message.
When working with bigger avro schemas, sometimes is not easy to visually find the field that has an issue.
This library provide clearer exceptions when validating data against the avro schema, in order to be easier to
identify the field that is not compliant with the schema and the problem with that field.
## Installing
Install using pip:
```bash
$ pip install -U avro_validator
```
## Validating data against Avro schema
The validator can be used as a console application. It receives a schema file, and a data file, validating the data
and returning the error message in case of failure.
The avro_validator can also be used as a library in python code.
### Console usage
In order to validate the `data_to_validate.json` file against the `schema.avsc` using the `avro_validator` callable, just type:
```bash
$ avro_validator schema.avsc data_to_valdate.json
OK
```
Since the data is valid according to the schema, the return message is `OK`.
#### Error validating the data
If the data is not valid, the program returns an error message:
```bash
$ avro_validator schema.avsc data_to_valdate.json
Error validating value for field [data,my_boolean_value]: The value [123] is not from one of the following types: [[NullType, BooleanType]]
```
This message indicates that the field `my_boolean_value` inside the `data` dictionary has value `123`, which is not
compatible with the `bool` type.
#### Command usage
It is possible to get information about usage of the `avro_validator` using the help:
```bash
$ avro_validator -h
```
### Library usage
#### Using schema file
When using the avr_validator as a library, it is possible to pass the schema as a file:
```python
from avro_validator.schema import Schema
schema_file = 'schema.avsc'
schema = Schema(schema_file)
parsed_schema = schema.parse()
data_to_validate = {
'name': 'My Name'
}
parsed_schema.validate(data_to_validate)
```
In this example, if the `data_to_validate` is valid according to the schema, then the
`parsed_schema.validate(data_to_validate)` call will return `True`.
#### Using a dict as schema
It is also possible to provide the schema as a json string:
```python
import json
from avro_validator.schema import Schema
schema = json.dumps({
'name': 'test schema',
'type': 'record',
'doc': 'schema for testing avro_validator',
'fields': [
{
'name': 'name',
'type': 'string'
}
]
})
schema = Schema(schema)
parsed_schema = schema.parse()
data_to_validate = {
'name': 'My Name'
}
parsed_schema.validate(data_to_validate)
```
In this example, the `parsed_schema.validate(data_to_validate)` call will return `True`, since the data is valid according to the schema.
#### Invalid data
If the data is not valid, the `parsed_schema.validate` will raise a `ValueError`, with the message containing the error description.
```python
import json
from avro_validator.schema import Schema
schema = json.dumps({
'name': 'test schema',
'type': 'record',
'doc': 'schema for testing avro_validator',
'fields': [
{
'name': 'name',
'type': 'string',
'doc': 'Field that stores the name'
}
]
})
schema = Schema(schema)
parsed_schema = schema.parse()
data_to_validate = {
'my_name': 'My Name'
}
parsed_schema.validate(data_to_validate)
```
The schema defined expects only one field, named `name`, but the data contains only the field `name_2`,
making it invalid according to the schema. In this case, the `validate` method will return the following error:
```
Traceback (most recent call last):
File "/Users/leonardo.almeida/.pyenv/versions/avro_validator_venv/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3326, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-3-a5e8ce95d21c>", line 23, in <module>
parsed_schema.validate(data_to_validate)
File "/opt/dwh/avro_validator/avro_validator/avro_types.py", line 563, in validate
raise ValueError(f'The fields from value [{value}] differs from the fields '
ValueError: The fields from value [{'my_name': 'My Name'}] differs from the fields of the record type [{'name': RecordTypeField <name: name, type: StringType, doc: Field that stores the name, default: None, order: None, aliases: None>}]
```
The message detailed enough to enable the developer to pinpoint the error in the data.
#### Invalid schema
If the schema is not valid according to avro specifications, the `parse` method will also return a `ValueError`.
```python
import json
from avro_validator.schema import Schema
schema = json.dumps({
'name': 'test schema',
'type': 'record',
'doc': 'schema for testing avro_validator',
'fields': [
{
'name': 'name',
'type': 'invalid_type',
'doc': 'Field that stores the name'
}
]
})
schema = Schema(schema)
parsed_schema = schema.parse()
```
Since the schema tries to define the `name` field as `invalid_type`, the schema declaration is invalid,
thus the following exception will be raised:
```
Traceback (most recent call last):
File "/Users/leonardo.almeida/.pyenv/versions/avro_validator_venv/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3326, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-2-7f3f77000f08>", line 18, in <module>
parsed_schema = schema.parse()
File "/opt/dwh/avro_validator/avro_validator/schema.py", line 28, in parse
return RecordType.build(schema)
File "/opt/dwh/avro_validator/avro_validator/avro_types.py", line 588, in build
record_type.__fields = {field['name']: RecordTypeField.build(field) for field in json_repr['fields']}
File "/opt/dwh/avro_validator/avro_validator/avro_types.py", line 588, in <dictcomp>
record_type.__fields = {field['name']: RecordTypeField.build(field) for field in json_repr['fields']}
File "/opt/dwh/avro_validator/avro_validator/avro_types.py", line 419, in build
field.__type = cls.__build_field_type(json_repr)
File "/opt/dwh/avro_validator/avro_validator/avro_types.py", line 401, in __build_field_type
raise ValueError(f'Error parsing the field [{fields}]: {actual_error}')
ValueError: Error parsing the field [name]: The type [invalid_type] is not recognized by Avro
```
The message is clearly indicating that the the `invalid_type` is not recognized by avro.
%package -n python3-avro-validator
Summary: Pure python avro schema validator
Provides: python-avro-validator
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-avro-validator
[](https://github.com/leocalm/avro_validator/actions/workflows/ci.yaml)
[](https://avro-validator.readthedocs.io/en/latest/?badge=latest)
[](https://badge.fury.io/py/avro-validator)
[](https://pepy.tech/project/avro-validator)
[](https://coveralls.io/github/leocalm/avro_validator?branch=main)
# Avro Validator
A pure python avro schema validator.
The default avro library for Python provide validation of data against the schema, the problem is that the output of
this validation doesn't provide information about the error.
All you get is the `the datum is not an example of the schema` error message.
When working with bigger avro schemas, sometimes is not easy to visually find the field that has an issue.
This library provide clearer exceptions when validating data against the avro schema, in order to be easier to
identify the field that is not compliant with the schema and the problem with that field.
## Installing
Install using pip:
```bash
$ pip install -U avro_validator
```
## Validating data against Avro schema
The validator can be used as a console application. It receives a schema file, and a data file, validating the data
and returning the error message in case of failure.
The avro_validator can also be used as a library in python code.
### Console usage
In order to validate the `data_to_validate.json` file against the `schema.avsc` using the `avro_validator` callable, just type:
```bash
$ avro_validator schema.avsc data_to_valdate.json
OK
```
Since the data is valid according to the schema, the return message is `OK`.
#### Error validating the data
If the data is not valid, the program returns an error message:
```bash
$ avro_validator schema.avsc data_to_valdate.json
Error validating value for field [data,my_boolean_value]: The value [123] is not from one of the following types: [[NullType, BooleanType]]
```
This message indicates that the field `my_boolean_value` inside the `data` dictionary has value `123`, which is not
compatible with the `bool` type.
#### Command usage
It is possible to get information about usage of the `avro_validator` using the help:
```bash
$ avro_validator -h
```
### Library usage
#### Using schema file
When using the avr_validator as a library, it is possible to pass the schema as a file:
```python
from avro_validator.schema import Schema
schema_file = 'schema.avsc'
schema = Schema(schema_file)
parsed_schema = schema.parse()
data_to_validate = {
'name': 'My Name'
}
parsed_schema.validate(data_to_validate)
```
In this example, if the `data_to_validate` is valid according to the schema, then the
`parsed_schema.validate(data_to_validate)` call will return `True`.
#### Using a dict as schema
It is also possible to provide the schema as a json string:
```python
import json
from avro_validator.schema import Schema
schema = json.dumps({
'name': 'test schema',
'type': 'record',
'doc': 'schema for testing avro_validator',
'fields': [
{
'name': 'name',
'type': 'string'
}
]
})
schema = Schema(schema)
parsed_schema = schema.parse()
data_to_validate = {
'name': 'My Name'
}
parsed_schema.validate(data_to_validate)
```
In this example, the `parsed_schema.validate(data_to_validate)` call will return `True`, since the data is valid according to the schema.
#### Invalid data
If the data is not valid, the `parsed_schema.validate` will raise a `ValueError`, with the message containing the error description.
```python
import json
from avro_validator.schema import Schema
schema = json.dumps({
'name': 'test schema',
'type': 'record',
'doc': 'schema for testing avro_validator',
'fields': [
{
'name': 'name',
'type': 'string',
'doc': 'Field that stores the name'
}
]
})
schema = Schema(schema)
parsed_schema = schema.parse()
data_to_validate = {
'my_name': 'My Name'
}
parsed_schema.validate(data_to_validate)
```
The schema defined expects only one field, named `name`, but the data contains only the field `name_2`,
making it invalid according to the schema. In this case, the `validate` method will return the following error:
```
Traceback (most recent call last):
File "/Users/leonardo.almeida/.pyenv/versions/avro_validator_venv/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3326, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-3-a5e8ce95d21c>", line 23, in <module>
parsed_schema.validate(data_to_validate)
File "/opt/dwh/avro_validator/avro_validator/avro_types.py", line 563, in validate
raise ValueError(f'The fields from value [{value}] differs from the fields '
ValueError: The fields from value [{'my_name': 'My Name'}] differs from the fields of the record type [{'name': RecordTypeField <name: name, type: StringType, doc: Field that stores the name, default: None, order: None, aliases: None>}]
```
The message detailed enough to enable the developer to pinpoint the error in the data.
#### Invalid schema
If the schema is not valid according to avro specifications, the `parse` method will also return a `ValueError`.
```python
import json
from avro_validator.schema import Schema
schema = json.dumps({
'name': 'test schema',
'type': 'record',
'doc': 'schema for testing avro_validator',
'fields': [
{
'name': 'name',
'type': 'invalid_type',
'doc': 'Field that stores the name'
}
]
})
schema = Schema(schema)
parsed_schema = schema.parse()
```
Since the schema tries to define the `name` field as `invalid_type`, the schema declaration is invalid,
thus the following exception will be raised:
```
Traceback (most recent call last):
File "/Users/leonardo.almeida/.pyenv/versions/avro_validator_venv/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3326, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-2-7f3f77000f08>", line 18, in <module>
parsed_schema = schema.parse()
File "/opt/dwh/avro_validator/avro_validator/schema.py", line 28, in parse
return RecordType.build(schema)
File "/opt/dwh/avro_validator/avro_validator/avro_types.py", line 588, in build
record_type.__fields = {field['name']: RecordTypeField.build(field) for field in json_repr['fields']}
File "/opt/dwh/avro_validator/avro_validator/avro_types.py", line 588, in <dictcomp>
record_type.__fields = {field['name']: RecordTypeField.build(field) for field in json_repr['fields']}
File "/opt/dwh/avro_validator/avro_validator/avro_types.py", line 419, in build
field.__type = cls.__build_field_type(json_repr)
File "/opt/dwh/avro_validator/avro_validator/avro_types.py", line 401, in __build_field_type
raise ValueError(f'Error parsing the field [{fields}]: {actual_error}')
ValueError: Error parsing the field [name]: The type [invalid_type] is not recognized by Avro
```
The message is clearly indicating that the the `invalid_type` is not recognized by avro.
%package help
Summary: Development documents and examples for avro-validator
Provides: python3-avro-validator-doc
%description help
[](https://github.com/leocalm/avro_validator/actions/workflows/ci.yaml)
[](https://avro-validator.readthedocs.io/en/latest/?badge=latest)
[](https://badge.fury.io/py/avro-validator)
[](https://pepy.tech/project/avro-validator)
[](https://coveralls.io/github/leocalm/avro_validator?branch=main)
# Avro Validator
A pure python avro schema validator.
The default avro library for Python provide validation of data against the schema, the problem is that the output of
this validation doesn't provide information about the error.
All you get is the `the datum is not an example of the schema` error message.
When working with bigger avro schemas, sometimes is not easy to visually find the field that has an issue.
This library provide clearer exceptions when validating data against the avro schema, in order to be easier to
identify the field that is not compliant with the schema and the problem with that field.
## Installing
Install using pip:
```bash
$ pip install -U avro_validator
```
## Validating data against Avro schema
The validator can be used as a console application. It receives a schema file, and a data file, validating the data
and returning the error message in case of failure.
The avro_validator can also be used as a library in python code.
### Console usage
In order to validate the `data_to_validate.json` file against the `schema.avsc` using the `avro_validator` callable, just type:
```bash
$ avro_validator schema.avsc data_to_valdate.json
OK
```
Since the data is valid according to the schema, the return message is `OK`.
#### Error validating the data
If the data is not valid, the program returns an error message:
```bash
$ avro_validator schema.avsc data_to_valdate.json
Error validating value for field [data,my_boolean_value]: The value [123] is not from one of the following types: [[NullType, BooleanType]]
```
This message indicates that the field `my_boolean_value` inside the `data` dictionary has value `123`, which is not
compatible with the `bool` type.
#### Command usage
It is possible to get information about usage of the `avro_validator` using the help:
```bash
$ avro_validator -h
```
### Library usage
#### Using schema file
When using the avr_validator as a library, it is possible to pass the schema as a file:
```python
from avro_validator.schema import Schema
schema_file = 'schema.avsc'
schema = Schema(schema_file)
parsed_schema = schema.parse()
data_to_validate = {
'name': 'My Name'
}
parsed_schema.validate(data_to_validate)
```
In this example, if the `data_to_validate` is valid according to the schema, then the
`parsed_schema.validate(data_to_validate)` call will return `True`.
#### Using a dict as schema
It is also possible to provide the schema as a json string:
```python
import json
from avro_validator.schema import Schema
schema = json.dumps({
'name': 'test schema',
'type': 'record',
'doc': 'schema for testing avro_validator',
'fields': [
{
'name': 'name',
'type': 'string'
}
]
})
schema = Schema(schema)
parsed_schema = schema.parse()
data_to_validate = {
'name': 'My Name'
}
parsed_schema.validate(data_to_validate)
```
In this example, the `parsed_schema.validate(data_to_validate)` call will return `True`, since the data is valid according to the schema.
#### Invalid data
If the data is not valid, the `parsed_schema.validate` will raise a `ValueError`, with the message containing the error description.
```python
import json
from avro_validator.schema import Schema
schema = json.dumps({
'name': 'test schema',
'type': 'record',
'doc': 'schema for testing avro_validator',
'fields': [
{
'name': 'name',
'type': 'string',
'doc': 'Field that stores the name'
}
]
})
schema = Schema(schema)
parsed_schema = schema.parse()
data_to_validate = {
'my_name': 'My Name'
}
parsed_schema.validate(data_to_validate)
```
The schema defined expects only one field, named `name`, but the data contains only the field `name_2`,
making it invalid according to the schema. In this case, the `validate` method will return the following error:
```
Traceback (most recent call last):
File "/Users/leonardo.almeida/.pyenv/versions/avro_validator_venv/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3326, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-3-a5e8ce95d21c>", line 23, in <module>
parsed_schema.validate(data_to_validate)
File "/opt/dwh/avro_validator/avro_validator/avro_types.py", line 563, in validate
raise ValueError(f'The fields from value [{value}] differs from the fields '
ValueError: The fields from value [{'my_name': 'My Name'}] differs from the fields of the record type [{'name': RecordTypeField <name: name, type: StringType, doc: Field that stores the name, default: None, order: None, aliases: None>}]
```
The message detailed enough to enable the developer to pinpoint the error in the data.
#### Invalid schema
If the schema is not valid according to avro specifications, the `parse` method will also return a `ValueError`.
```python
import json
from avro_validator.schema import Schema
schema = json.dumps({
'name': 'test schema',
'type': 'record',
'doc': 'schema for testing avro_validator',
'fields': [
{
'name': 'name',
'type': 'invalid_type',
'doc': 'Field that stores the name'
}
]
})
schema = Schema(schema)
parsed_schema = schema.parse()
```
Since the schema tries to define the `name` field as `invalid_type`, the schema declaration is invalid,
thus the following exception will be raised:
```
Traceback (most recent call last):
File "/Users/leonardo.almeida/.pyenv/versions/avro_validator_venv/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3326, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-2-7f3f77000f08>", line 18, in <module>
parsed_schema = schema.parse()
File "/opt/dwh/avro_validator/avro_validator/schema.py", line 28, in parse
return RecordType.build(schema)
File "/opt/dwh/avro_validator/avro_validator/avro_types.py", line 588, in build
record_type.__fields = {field['name']: RecordTypeField.build(field) for field in json_repr['fields']}
File "/opt/dwh/avro_validator/avro_validator/avro_types.py", line 588, in <dictcomp>
record_type.__fields = {field['name']: RecordTypeField.build(field) for field in json_repr['fields']}
File "/opt/dwh/avro_validator/avro_validator/avro_types.py", line 419, in build
field.__type = cls.__build_field_type(json_repr)
File "/opt/dwh/avro_validator/avro_validator/avro_types.py", line 401, in __build_field_type
raise ValueError(f'Error parsing the field [{fields}]: {actual_error}')
ValueError: Error parsing the field [name]: The type [invalid_type] is not recognized by Avro
```
The message is clearly indicating that the the `invalid_type` is not recognized by avro.
%prep
%autosetup -n avro-validator-1.2.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-avro-validator -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2.1-1
- Package Spec generated
|