1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
|
%global _empty_manifest_terminate_build 0
Name: python-awkward1
Version: 1.0.0
Release: 1
Summary: Manipulate JSON-like data with NumPy-like idioms.
License: BSD 3-clause
URL: https://github.com/scikit-hep/awkward-1.0
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/05/e1/de4607482cd18eb43bfb4c7381571ad0928f7ebf0ed5815f93b21cc5e46a/awkward1-1.0.0.tar.gz
BuildArch: noarch
Requires: python3-awkward
%description
<a href="https://github.com/scikit-hep/awkward-1.0#readme"><img src="https://github.com/scikit-hep/awkward-1.0/raw/main/docs-img/logo/logo-300px.png"></a>
Awkward Array is a library for **nested, variable-sized data**, including arbitrary-length lists, records, mixed types, and missing data, using **NumPy-like idioms**.
Arrays are **dynamically typed**, but operations on them are **compiled and fast**. Their behavior coincides with NumPy when array dimensions are regular and generalizes when they're not.
# Motivating example
Given an array of objects with `x`, `y` fields and variable-length nested lists like
```python
array = ak.Array([
[{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}],
[],
[{"x": 4.4, "y": {1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}]
])
```
the following slices out the `y` values, drops the first element from each inner list, and runs NumPy's `np.square` function on everything that is left:
```python
output = np.square(array["y", ..., 1:])
```
The result is
```python
[
[[], [4], [4, 9]],
[],
[[4, 9, 16], [4, 9, 16, 25]]
]
```
The equivalent using only Python is
```python
output = []
for sublist in array:
tmp1 = []
for record in sublist:
tmp2 = []
for number in record["y"][1:]:
tmp2.append(np.square(number))
tmp1.append(tmp2)
output.append(tmp1)
```
Not only is the expression using Awkward Arrays more concise, using idioms familiar from NumPy, but it's much faster and uses less memory.
For a similar problem 10 million times larger than the one above (on a single-threaded 2.2 GHz processor),
* the Awkward Array one-liner takes **4.6 seconds** to run and uses **2.1 GB** of memory,
* the equivalent using Python lists and dicts takes **138 seconds** to run and uses **22 GB** of memory.
Speed and memory factors in the double digits are common because we're replacing Python's dynamically typed, pointer-chasing virtual machine with type-specialized, precompiled routines on contiguous data. (In other words, for the same reasons as NumPy.) Even higher speedups are possible when Awkward Array is paired with [Numba](https://numba.pydata.org/).
Our [presentation at SciPy 2020](https://youtu.be/WlnUF3LRBj4) provides a good introduction, showing how to use these arrays in a real analysis.
# Installation
Awkward Array can be installed [from PyPI](https://pypi.org/project/awkward) using pip:
```bash
pip install awkward
```
You will likely get a precompiled binary (wheel), depending on your operating system and Python version. If not, pip attempts to compile from source (which requires a C++ compiler, make, and CMake).
Awkward Array is also available using [conda](https://anaconda.org/conda-forge/awkward), which always installs a binary:
```bash
conda install -c conda-forge awkward
```
If you have already added `conda-forge` as a channel, the `-c conda-forge` is unnecessary. Adding the channel is recommended because it ensures that all of your packages use compatible versions:
```bash
conda config --add channels conda-forge
conda update --all
```
## Getting help
<table>
<tr>
<td width="66%" valign="top">
<a href="https://awkward-array.org">
<img src="https://github.com/scikit-hep/awkward-1.0/raw/main/docs-img/panel-tutorials.png" width="570">
</a>
<p align="center"><b>
<a href="https://awkward-array.org">
How-to tutorials
</a>
</b></p>
</td>
<td width="33%" valign="top">
<a href="https://awkward-array.readthedocs.io/en/latest/index.html">
<img src="https://github.com/scikit-hep/awkward-1.0/raw/main/docs-img/panel-sphinx.png" width="268">
</a>
<p align="center"><b>
<a href="https://awkward-array.readthedocs.io/en/latest/index.html">
Python API reference
</a>
</b></p>
<a href="https://awkward-array.readthedocs.io/en/latest/_static/index.html">
<img src="https://github.com/scikit-hep/awkward-1.0/raw/main/docs-img/panel-doxygen.png" width="268">
</a>
<p align="center"><b>
<a href="https://awkward-array.readthedocs.io/en/latest/_static/index.html">
C++ API reference
</a>
</b></p>
</td>
</tr>
</table>
* Report bugs, request features, and ask for additional documentation on [GitHub Issues](https://github.com/scikit-hep/awkward-1.0/issues).
* If you have a "How do I...?" question, ask about it on [StackOverflow with the [awkward-array] tag](https://stackoverflow.com/questions/tagged/awkward-array). Be sure to include tags for any other libraries that you use, such as Pandas or PyTorch.
* To ask questions in real time, try the Gitter [Scikit-HEP/awkward-array](https://gitter.im/Scikit-HEP/awkward-array) chat room.
%package -n python3-awkward1
Summary: Manipulate JSON-like data with NumPy-like idioms.
Provides: python-awkward1
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-awkward1
<a href="https://github.com/scikit-hep/awkward-1.0#readme"><img src="https://github.com/scikit-hep/awkward-1.0/raw/main/docs-img/logo/logo-300px.png"></a>
Awkward Array is a library for **nested, variable-sized data**, including arbitrary-length lists, records, mixed types, and missing data, using **NumPy-like idioms**.
Arrays are **dynamically typed**, but operations on them are **compiled and fast**. Their behavior coincides with NumPy when array dimensions are regular and generalizes when they're not.
# Motivating example
Given an array of objects with `x`, `y` fields and variable-length nested lists like
```python
array = ak.Array([
[{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}],
[],
[{"x": 4.4, "y": {1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}]
])
```
the following slices out the `y` values, drops the first element from each inner list, and runs NumPy's `np.square` function on everything that is left:
```python
output = np.square(array["y", ..., 1:])
```
The result is
```python
[
[[], [4], [4, 9]],
[],
[[4, 9, 16], [4, 9, 16, 25]]
]
```
The equivalent using only Python is
```python
output = []
for sublist in array:
tmp1 = []
for record in sublist:
tmp2 = []
for number in record["y"][1:]:
tmp2.append(np.square(number))
tmp1.append(tmp2)
output.append(tmp1)
```
Not only is the expression using Awkward Arrays more concise, using idioms familiar from NumPy, but it's much faster and uses less memory.
For a similar problem 10 million times larger than the one above (on a single-threaded 2.2 GHz processor),
* the Awkward Array one-liner takes **4.6 seconds** to run and uses **2.1 GB** of memory,
* the equivalent using Python lists and dicts takes **138 seconds** to run and uses **22 GB** of memory.
Speed and memory factors in the double digits are common because we're replacing Python's dynamically typed, pointer-chasing virtual machine with type-specialized, precompiled routines on contiguous data. (In other words, for the same reasons as NumPy.) Even higher speedups are possible when Awkward Array is paired with [Numba](https://numba.pydata.org/).
Our [presentation at SciPy 2020](https://youtu.be/WlnUF3LRBj4) provides a good introduction, showing how to use these arrays in a real analysis.
# Installation
Awkward Array can be installed [from PyPI](https://pypi.org/project/awkward) using pip:
```bash
pip install awkward
```
You will likely get a precompiled binary (wheel), depending on your operating system and Python version. If not, pip attempts to compile from source (which requires a C++ compiler, make, and CMake).
Awkward Array is also available using [conda](https://anaconda.org/conda-forge/awkward), which always installs a binary:
```bash
conda install -c conda-forge awkward
```
If you have already added `conda-forge` as a channel, the `-c conda-forge` is unnecessary. Adding the channel is recommended because it ensures that all of your packages use compatible versions:
```bash
conda config --add channels conda-forge
conda update --all
```
## Getting help
<table>
<tr>
<td width="66%" valign="top">
<a href="https://awkward-array.org">
<img src="https://github.com/scikit-hep/awkward-1.0/raw/main/docs-img/panel-tutorials.png" width="570">
</a>
<p align="center"><b>
<a href="https://awkward-array.org">
How-to tutorials
</a>
</b></p>
</td>
<td width="33%" valign="top">
<a href="https://awkward-array.readthedocs.io/en/latest/index.html">
<img src="https://github.com/scikit-hep/awkward-1.0/raw/main/docs-img/panel-sphinx.png" width="268">
</a>
<p align="center"><b>
<a href="https://awkward-array.readthedocs.io/en/latest/index.html">
Python API reference
</a>
</b></p>
<a href="https://awkward-array.readthedocs.io/en/latest/_static/index.html">
<img src="https://github.com/scikit-hep/awkward-1.0/raw/main/docs-img/panel-doxygen.png" width="268">
</a>
<p align="center"><b>
<a href="https://awkward-array.readthedocs.io/en/latest/_static/index.html">
C++ API reference
</a>
</b></p>
</td>
</tr>
</table>
* Report bugs, request features, and ask for additional documentation on [GitHub Issues](https://github.com/scikit-hep/awkward-1.0/issues).
* If you have a "How do I...?" question, ask about it on [StackOverflow with the [awkward-array] tag](https://stackoverflow.com/questions/tagged/awkward-array). Be sure to include tags for any other libraries that you use, such as Pandas or PyTorch.
* To ask questions in real time, try the Gitter [Scikit-HEP/awkward-array](https://gitter.im/Scikit-HEP/awkward-array) chat room.
%package help
Summary: Development documents and examples for awkward1
Provides: python3-awkward1-doc
%description help
<a href="https://github.com/scikit-hep/awkward-1.0#readme"><img src="https://github.com/scikit-hep/awkward-1.0/raw/main/docs-img/logo/logo-300px.png"></a>
Awkward Array is a library for **nested, variable-sized data**, including arbitrary-length lists, records, mixed types, and missing data, using **NumPy-like idioms**.
Arrays are **dynamically typed**, but operations on them are **compiled and fast**. Their behavior coincides with NumPy when array dimensions are regular and generalizes when they're not.
# Motivating example
Given an array of objects with `x`, `y` fields and variable-length nested lists like
```python
array = ak.Array([
[{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}],
[],
[{"x": 4.4, "y": {1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}]
])
```
the following slices out the `y` values, drops the first element from each inner list, and runs NumPy's `np.square` function on everything that is left:
```python
output = np.square(array["y", ..., 1:])
```
The result is
```python
[
[[], [4], [4, 9]],
[],
[[4, 9, 16], [4, 9, 16, 25]]
]
```
The equivalent using only Python is
```python
output = []
for sublist in array:
tmp1 = []
for record in sublist:
tmp2 = []
for number in record["y"][1:]:
tmp2.append(np.square(number))
tmp1.append(tmp2)
output.append(tmp1)
```
Not only is the expression using Awkward Arrays more concise, using idioms familiar from NumPy, but it's much faster and uses less memory.
For a similar problem 10 million times larger than the one above (on a single-threaded 2.2 GHz processor),
* the Awkward Array one-liner takes **4.6 seconds** to run and uses **2.1 GB** of memory,
* the equivalent using Python lists and dicts takes **138 seconds** to run and uses **22 GB** of memory.
Speed and memory factors in the double digits are common because we're replacing Python's dynamically typed, pointer-chasing virtual machine with type-specialized, precompiled routines on contiguous data. (In other words, for the same reasons as NumPy.) Even higher speedups are possible when Awkward Array is paired with [Numba](https://numba.pydata.org/).
Our [presentation at SciPy 2020](https://youtu.be/WlnUF3LRBj4) provides a good introduction, showing how to use these arrays in a real analysis.
# Installation
Awkward Array can be installed [from PyPI](https://pypi.org/project/awkward) using pip:
```bash
pip install awkward
```
You will likely get a precompiled binary (wheel), depending on your operating system and Python version. If not, pip attempts to compile from source (which requires a C++ compiler, make, and CMake).
Awkward Array is also available using [conda](https://anaconda.org/conda-forge/awkward), which always installs a binary:
```bash
conda install -c conda-forge awkward
```
If you have already added `conda-forge` as a channel, the `-c conda-forge` is unnecessary. Adding the channel is recommended because it ensures that all of your packages use compatible versions:
```bash
conda config --add channels conda-forge
conda update --all
```
## Getting help
<table>
<tr>
<td width="66%" valign="top">
<a href="https://awkward-array.org">
<img src="https://github.com/scikit-hep/awkward-1.0/raw/main/docs-img/panel-tutorials.png" width="570">
</a>
<p align="center"><b>
<a href="https://awkward-array.org">
How-to tutorials
</a>
</b></p>
</td>
<td width="33%" valign="top">
<a href="https://awkward-array.readthedocs.io/en/latest/index.html">
<img src="https://github.com/scikit-hep/awkward-1.0/raw/main/docs-img/panel-sphinx.png" width="268">
</a>
<p align="center"><b>
<a href="https://awkward-array.readthedocs.io/en/latest/index.html">
Python API reference
</a>
</b></p>
<a href="https://awkward-array.readthedocs.io/en/latest/_static/index.html">
<img src="https://github.com/scikit-hep/awkward-1.0/raw/main/docs-img/panel-doxygen.png" width="268">
</a>
<p align="center"><b>
<a href="https://awkward-array.readthedocs.io/en/latest/_static/index.html">
C++ API reference
</a>
</b></p>
</td>
</tr>
</table>
* Report bugs, request features, and ask for additional documentation on [GitHub Issues](https://github.com/scikit-hep/awkward-1.0/issues).
* If you have a "How do I...?" question, ask about it on [StackOverflow with the [awkward-array] tag](https://stackoverflow.com/questions/tagged/awkward-array). Be sure to include tags for any other libraries that you use, such as Pandas or PyTorch.
* To ask questions in real time, try the Gitter [Scikit-HEP/awkward-array](https://gitter.im/Scikit-HEP/awkward-array) chat room.
%prep
%autosetup -n awkward1-1.0.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-awkward1 -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.0-1
- Package Spec generated
|