1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
%global _empty_manifest_terminate_build 0
Name: python-aws-cdk.aws-kinesisanalytics-flink-alpha
Version: 2.83.0a0
Release: 1
Summary: A CDK Construct Library for Kinesis Analytics Flink applications
License: Apache-2.0
URL: https://github.com/aws/aws-cdk
Source0: https://mirrors.aliyun.com/pypi/web/packages/fa/f4/5098b52d0fdb35daf61d3567b611e0e956a309b05e784e2ea5805f47b12f/aws-cdk.aws-kinesisanalytics-flink-alpha-2.83.0a0.tar.gz
BuildArch: noarch
Requires: python3-aws-cdk-lib
Requires: python3-constructs
Requires: python3-jsii
Requires: python3-publication
Requires: python3-typeguard
%description
<!--END STABILITY BANNER-->
This package provides constructs for creating Kinesis Analytics Flink
applications. To learn more about using using managed Flink applications, see
the [AWS developer
guide](https://docs.aws.amazon.com/kinesisanalytics/latest/java/).
## Creating Flink Applications
To create a new Flink application, use the `Application` construct:
```python
import path as path
import aws_cdk.aws_cloudwatch as cloudwatch
import aws_cdk as core
import aws_cdk.aws_kinesisanalytics_flink_alpha as flink
app = core.App()
stack = core.Stack(app, "FlinkAppTest")
flink_app = flink.Application(stack, "App",
code=flink.ApplicationCode.from_asset(path.join(__dirname, "code-asset")),
runtime=flink.Runtime.FLINK_1_11
)
cloudwatch.Alarm(stack, "Alarm",
metric=flink_app.metric_full_restarts(),
evaluation_periods=1,
threshold=3
)
app.synth()
```
The `code` property can use `fromAsset` as shown above to reference a local jar
file in s3 or `fromBucket` to reference a file in s3.
```python
import path as path
import aws_cdk.aws_s3_assets as assets
import aws_cdk as core
import aws_cdk.aws_kinesisanalytics_flink_alpha as flink
app = core.App()
stack = core.Stack(app, "FlinkAppCodeFromBucketTest")
asset = assets.Asset(stack, "CodeAsset",
path=path.join(__dirname, "code-asset")
)
bucket = asset.bucket
file_key = asset.s3_object_key
flink.Application(stack, "App",
code=flink.ApplicationCode.from_bucket(bucket, file_key),
runtime=flink.Runtime.FLINK_1_11
)
app.synth()
```
The `propertyGroups` property provides a way of passing arbitrary runtime
properties to your Flink application. You can use the
aws-kinesisanalytics-runtime library to [retrieve these
properties](https://docs.aws.amazon.com/kinesisanalytics/latest/java/how-properties.html#how-properties-access).
```python
# bucket: s3.Bucket
flink_app = flink.Application(self, "Application",
property_groups={
"FlinkApplicationProperties": {
"input_stream_name": "my-input-kinesis-stream",
"output_stream_name": "my-output-kinesis-stream"
}
},
# ...
runtime=flink.Runtime.FLINK_1_15,
code=flink.ApplicationCode.from_bucket(bucket, "my-app.jar")
)
```
Flink applications also have specific configuration for passing parameters
when the Flink job starts. These include parameters for checkpointing,
snapshotting, monitoring, and parallelism.
```python
# bucket: s3.Bucket
flink_app = flink.Application(self, "Application",
code=flink.ApplicationCode.from_bucket(bucket, "my-app.jar"),
runtime=flink.Runtime.FLINK_1_15,
checkpointing_enabled=True, # default is true
checkpoint_interval=Duration.seconds(30), # default is 1 minute
min_pause_between_checkpoints=Duration.seconds(10), # default is 5 seconds
log_level=flink.LogLevel.ERROR, # default is INFO
metrics_level=flink.MetricsLevel.PARALLELISM, # default is APPLICATION
auto_scaling_enabled=False, # default is true
parallelism=32, # default is 1
parallelism_per_kpu=2, # default is 1
snapshots_enabled=False, # default is true
log_group=logs.LogGroup(self, "LogGroup")
)
```
Flink applications can optionally be deployed in a VPC:
```python
# bucket: s3.Bucket
# vpc: ec2.Vpc
flink_app = flink.Application(self, "Application",
code=flink.ApplicationCode.from_bucket(bucket, "my-app.jar"),
runtime=flink.Runtime.FLINK_1_15,
vpc=vpc
)
```
%package -n python3-aws-cdk.aws-kinesisanalytics-flink-alpha
Summary: A CDK Construct Library for Kinesis Analytics Flink applications
Provides: python-aws-cdk.aws-kinesisanalytics-flink-alpha
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-aws-cdk.aws-kinesisanalytics-flink-alpha
<!--END STABILITY BANNER-->
This package provides constructs for creating Kinesis Analytics Flink
applications. To learn more about using using managed Flink applications, see
the [AWS developer
guide](https://docs.aws.amazon.com/kinesisanalytics/latest/java/).
## Creating Flink Applications
To create a new Flink application, use the `Application` construct:
```python
import path as path
import aws_cdk.aws_cloudwatch as cloudwatch
import aws_cdk as core
import aws_cdk.aws_kinesisanalytics_flink_alpha as flink
app = core.App()
stack = core.Stack(app, "FlinkAppTest")
flink_app = flink.Application(stack, "App",
code=flink.ApplicationCode.from_asset(path.join(__dirname, "code-asset")),
runtime=flink.Runtime.FLINK_1_11
)
cloudwatch.Alarm(stack, "Alarm",
metric=flink_app.metric_full_restarts(),
evaluation_periods=1,
threshold=3
)
app.synth()
```
The `code` property can use `fromAsset` as shown above to reference a local jar
file in s3 or `fromBucket` to reference a file in s3.
```python
import path as path
import aws_cdk.aws_s3_assets as assets
import aws_cdk as core
import aws_cdk.aws_kinesisanalytics_flink_alpha as flink
app = core.App()
stack = core.Stack(app, "FlinkAppCodeFromBucketTest")
asset = assets.Asset(stack, "CodeAsset",
path=path.join(__dirname, "code-asset")
)
bucket = asset.bucket
file_key = asset.s3_object_key
flink.Application(stack, "App",
code=flink.ApplicationCode.from_bucket(bucket, file_key),
runtime=flink.Runtime.FLINK_1_11
)
app.synth()
```
The `propertyGroups` property provides a way of passing arbitrary runtime
properties to your Flink application. You can use the
aws-kinesisanalytics-runtime library to [retrieve these
properties](https://docs.aws.amazon.com/kinesisanalytics/latest/java/how-properties.html#how-properties-access).
```python
# bucket: s3.Bucket
flink_app = flink.Application(self, "Application",
property_groups={
"FlinkApplicationProperties": {
"input_stream_name": "my-input-kinesis-stream",
"output_stream_name": "my-output-kinesis-stream"
}
},
# ...
runtime=flink.Runtime.FLINK_1_15,
code=flink.ApplicationCode.from_bucket(bucket, "my-app.jar")
)
```
Flink applications also have specific configuration for passing parameters
when the Flink job starts. These include parameters for checkpointing,
snapshotting, monitoring, and parallelism.
```python
# bucket: s3.Bucket
flink_app = flink.Application(self, "Application",
code=flink.ApplicationCode.from_bucket(bucket, "my-app.jar"),
runtime=flink.Runtime.FLINK_1_15,
checkpointing_enabled=True, # default is true
checkpoint_interval=Duration.seconds(30), # default is 1 minute
min_pause_between_checkpoints=Duration.seconds(10), # default is 5 seconds
log_level=flink.LogLevel.ERROR, # default is INFO
metrics_level=flink.MetricsLevel.PARALLELISM, # default is APPLICATION
auto_scaling_enabled=False, # default is true
parallelism=32, # default is 1
parallelism_per_kpu=2, # default is 1
snapshots_enabled=False, # default is true
log_group=logs.LogGroup(self, "LogGroup")
)
```
Flink applications can optionally be deployed in a VPC:
```python
# bucket: s3.Bucket
# vpc: ec2.Vpc
flink_app = flink.Application(self, "Application",
code=flink.ApplicationCode.from_bucket(bucket, "my-app.jar"),
runtime=flink.Runtime.FLINK_1_15,
vpc=vpc
)
```
%package help
Summary: Development documents and examples for aws-cdk.aws-kinesisanalytics-flink-alpha
Provides: python3-aws-cdk.aws-kinesisanalytics-flink-alpha-doc
%description help
<!--END STABILITY BANNER-->
This package provides constructs for creating Kinesis Analytics Flink
applications. To learn more about using using managed Flink applications, see
the [AWS developer
guide](https://docs.aws.amazon.com/kinesisanalytics/latest/java/).
## Creating Flink Applications
To create a new Flink application, use the `Application` construct:
```python
import path as path
import aws_cdk.aws_cloudwatch as cloudwatch
import aws_cdk as core
import aws_cdk.aws_kinesisanalytics_flink_alpha as flink
app = core.App()
stack = core.Stack(app, "FlinkAppTest")
flink_app = flink.Application(stack, "App",
code=flink.ApplicationCode.from_asset(path.join(__dirname, "code-asset")),
runtime=flink.Runtime.FLINK_1_11
)
cloudwatch.Alarm(stack, "Alarm",
metric=flink_app.metric_full_restarts(),
evaluation_periods=1,
threshold=3
)
app.synth()
```
The `code` property can use `fromAsset` as shown above to reference a local jar
file in s3 or `fromBucket` to reference a file in s3.
```python
import path as path
import aws_cdk.aws_s3_assets as assets
import aws_cdk as core
import aws_cdk.aws_kinesisanalytics_flink_alpha as flink
app = core.App()
stack = core.Stack(app, "FlinkAppCodeFromBucketTest")
asset = assets.Asset(stack, "CodeAsset",
path=path.join(__dirname, "code-asset")
)
bucket = asset.bucket
file_key = asset.s3_object_key
flink.Application(stack, "App",
code=flink.ApplicationCode.from_bucket(bucket, file_key),
runtime=flink.Runtime.FLINK_1_11
)
app.synth()
```
The `propertyGroups` property provides a way of passing arbitrary runtime
properties to your Flink application. You can use the
aws-kinesisanalytics-runtime library to [retrieve these
properties](https://docs.aws.amazon.com/kinesisanalytics/latest/java/how-properties.html#how-properties-access).
```python
# bucket: s3.Bucket
flink_app = flink.Application(self, "Application",
property_groups={
"FlinkApplicationProperties": {
"input_stream_name": "my-input-kinesis-stream",
"output_stream_name": "my-output-kinesis-stream"
}
},
# ...
runtime=flink.Runtime.FLINK_1_15,
code=flink.ApplicationCode.from_bucket(bucket, "my-app.jar")
)
```
Flink applications also have specific configuration for passing parameters
when the Flink job starts. These include parameters for checkpointing,
snapshotting, monitoring, and parallelism.
```python
# bucket: s3.Bucket
flink_app = flink.Application(self, "Application",
code=flink.ApplicationCode.from_bucket(bucket, "my-app.jar"),
runtime=flink.Runtime.FLINK_1_15,
checkpointing_enabled=True, # default is true
checkpoint_interval=Duration.seconds(30), # default is 1 minute
min_pause_between_checkpoints=Duration.seconds(10), # default is 5 seconds
log_level=flink.LogLevel.ERROR, # default is INFO
metrics_level=flink.MetricsLevel.PARALLELISM, # default is APPLICATION
auto_scaling_enabled=False, # default is true
parallelism=32, # default is 1
parallelism_per_kpu=2, # default is 1
snapshots_enabled=False, # default is true
log_group=logs.LogGroup(self, "LogGroup")
)
```
Flink applications can optionally be deployed in a VPC:
```python
# bucket: s3.Bucket
# vpc: ec2.Vpc
flink_app = flink.Application(self, "Application",
code=flink.ApplicationCode.from_bucket(bucket, "my-app.jar"),
runtime=flink.Runtime.FLINK_1_15,
vpc=vpc
)
```
%prep
%autosetup -n aws-cdk.aws-kinesisanalytics-flink-alpha-2.83.0a0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-aws-cdk.aws-kinesisanalytics-flink-alpha -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 2.83.0a0-1
- Package Spec generated
|