summaryrefslogtreecommitdiff
path: root/python-awswrangler.spec
blob: 1b949551ab5c517fc9b5cba1c223d604a5cf8ab8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
%global _empty_manifest_terminate_build 0
Name:		python-awswrangler
Version:	3.0.0
Release:	1
Summary:	Pandas on AWS.
License:	Apache-2.0
URL:		https://aws-sdk-pandas.readthedocs.io/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/56/ae/43add1a275d7c4f149fa005239b34382e0f9b5a5deef164eb096346b4c46/awswrangler-3.0.0.tar.gz
BuildArch:	noarch

Requires:	python3-boto3
Requires:	python3-botocore
Requires:	python3-pandas
Requires:	python3-numpy
Requires:	python3-pyarrow
Requires:	python3-typing-extensions
Requires:	python3-redshift-connector
Requires:	python3-pymysql
Requires:	python3-pg8000
Requires:	python3-pyodbc
Requires:	python3-oracledb
Requires:	python3-gremlinpython
Requires:	python3-SPARQLWrapper
Requires:	python3-requests
Requires:	python3-opensearch-py
Requires:	python3-requests-aws4auth
Requires:	python3-jsonpath-ng
Requires:	python3-openpyxl
Requires:	python3-progressbar2
Requires:	python3-deltalake
Requires:	python3-modin
Requires:	python3-ray[data,default]

%description
# AWS SDK for pandas (awswrangler)

AWS Data Wrangler is now **AWS SDK for pandas (awswrangler)**.  We’re changing the name we use when we talk about the library, but everything else will stay the same.  You’ll still be able to install using `pip install awswrangler` and you won’t need to change any of your code.  As part of this change, we’ve moved the library from AWS Labs to the main AWS GitHub organisation but, thanks to the GitHub’s redirect feature, you’ll still be able to access the project by its old URLs until you update your bookmarks.  Our documentation has also moved to [aws-sdk-pandas.readthedocs.io](https://aws-sdk-pandas.readthedocs.io), but old bookmarks will redirect to the new site.

*Pandas on AWS*

Easy integration with Athena, Glue, Redshift, Timestream, OpenSearch, Neptune, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).

![AWS SDK for pandas](docs/source/_static/logo2.png?raw=true "AWS SDK for pandas")
![tracker](https://d3tiqpr4kkkomd.cloudfront.net/img/pixel.png?asset=GVOYN2BOOQ573LTVIHEW)

> An [AWS Professional Service](https://aws.amazon.com/professional-services/) open source initiative | aws-proserve-opensource@amazon.com

[![Release](https://img.shields.io/badge/3.0.0-brightgreen.svg)](https://pypi.org/project/awswrangler/)
[![Python Version](https://img.shields.io/badge/python-3.8%20%7C%203.8%20%7C%203.9%20%7C%203.10-brightgreen.svg)](https://anaconda.org/conda-forge/awswrangler)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)

[![Checked with mypy](http://www.mypy-lang.org/static/mypy_badge.svg)](http://mypy-lang.org/)
![Static Checking](https://github.com/aws/aws-sdk-pandas/workflows/Static%20Checking/badge.svg?branch=main)
[![Documentation Status](https://readthedocs.org/projects/aws-sdk-pandas/badge/?version=latest)](https://aws-sdk-pandas.readthedocs.io/?badge=latest)

| Source | Downloads | Installation Command |
|--------|-----------|----------------------|
| **[PyPi](https://pypi.org/project/awswrangler/)**  | [![PyPI Downloads](https://pepy.tech/badge/awswrangler)](https://pypi.org/project/awswrangler/) | `pip install awswrangler` |
| **[Conda](https://anaconda.org/conda-forge/awswrangler)** | [![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/awswrangler.svg)](https://anaconda.org/conda-forge/awswrangler) | `conda install -c conda-forge awswrangler` |

> ⚠️ **Starting version 3.0, optional modules must be installed explicitly:**<br>
➡️`pip install 'awswrangler[redshift]'`

Powered By [<img src="https://arrow.apache.org/img/arrow.png" width="200">](https://arrow.apache.org/powered_by/)

## Table of contents

- [Quick Start](#quick-start)
- [At Scale](#at-scale)
- [Read The Docs](#read-the-docs)
- [Getting Help](#getting-help)
- [Community Resources](#community-resources)
- [Logging](#logging)
- [Who uses AWS SDK for pandas?](#who-uses-aws-sdk-pandas)

## Quick Start

Installation command: `pip install awswrangler`

> ⚠️ **Starting version 3.0, optional modules must be installed explicitly:**<br>
➡️`pip install 'awswrangler[redshift]'`

```py3
import awswrangler as wr
import pandas as pd
from datetime import datetime

df = pd.DataFrame({"id": [1, 2], "value": ["foo", "boo"]})

# Storing data on Data Lake
wr.s3.to_parquet(
    df=df,
    path="s3://bucket/dataset/",
    dataset=True,
    database="my_db",
    table="my_table"
)

# Retrieving the data directly from Amazon S3
df = wr.s3.read_parquet("s3://bucket/dataset/", dataset=True)

# Retrieving the data from Amazon Athena
df = wr.athena.read_sql_query("SELECT * FROM my_table", database="my_db")

# Get a Redshift connection from Glue Catalog and retrieving data from Redshift Spectrum
con = wr.redshift.connect("my-glue-connection")
df = wr.redshift.read_sql_query("SELECT * FROM external_schema.my_table", con=con)
con.close()

# Amazon Timestream Write
df = pd.DataFrame({
    "time": [datetime.now(), datetime.now()],   
    "my_dimension": ["foo", "boo"],
    "measure": [1.0, 1.1],
})
rejected_records = wr.timestream.write(df,
    database="sampleDB",
    table="sampleTable",
    time_col="time",
    measure_col="measure",
    dimensions_cols=["my_dimension"],
)

# Amazon Timestream Query
wr.timestream.query("""
SELECT time, measure_value::double, my_dimension
FROM "sampleDB"."sampleTable" ORDER BY time DESC LIMIT 3
""")

```

## At scale
AWS SDK for pandas can also run your workflows at scale by leveraging [Modin](https://modin.readthedocs.io/en/stable/) and [Ray](https://www.ray.io/). Both projects aim to speed up data workloads by distributing processing over a cluster of workers.

The quickest way to get started is to use AWS Glue with Ray. Read our [docs](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/scale.html), our [blog](https://aws.amazon.com/blogs/big-data/scale-aws-sdk-for-pandas-workloads-with-aws-glue-for-ray/), or head to our latest [tutorials](https://github.com/aws/aws-sdk-pandas/tree/main/tutorials) to discover even more features.

## [Read The Docs](https://aws-sdk-pandas.readthedocs.io/)

- [**What is AWS SDK for pandas?**](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/what.html)
- [**Install**](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html)
  - [PyPi (pip)](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#pypi-pip)
  - [Conda](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#conda)
  - [AWS Lambda Layer](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#aws-lambda-layer)
  - [AWS Glue Python Shell Jobs](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#aws-glue-python-shell-jobs)
  - [AWS Glue PySpark Jobs](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#aws-glue-pyspark-jobs)
  - [Amazon SageMaker Notebook](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#amazon-sagemaker-notebook)
  - [Amazon SageMaker Notebook Lifecycle](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#amazon-sagemaker-notebook-lifecycle)
  - [EMR](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#emr)
  - [From source](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#from-source)
- [**At scale**](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/scale.html)
  - [Getting Started](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/scale.html#getting-started)
  - [Supported APIs](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/scale.html#supported-apis)
  - [Resources](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/scale.html#resources)
- [**Tutorials**](https://github.com/aws/aws-sdk-pandas/tree/main/tutorials)
  - [001 - Introduction](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/001%20-%20Introduction.ipynb)
  - [002 - Sessions](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/002%20-%20Sessions.ipynb)
  - [003 - Amazon S3](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/003%20-%20Amazon%20S3.ipynb)
  - [004 - Parquet Datasets](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/004%20-%20Parquet%20Datasets.ipynb)
  - [005 - Glue Catalog](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/005%20-%20Glue%20Catalog.ipynb)
  - [006 - Amazon Athena](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/006%20-%20Amazon%20Athena.ipynb)
  - [007 - Databases (Redshift, MySQL, PostgreSQL, SQL Server and Oracle)](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/007%20-%20Redshift%2C%20MySQL%2C%20PostgreSQL%2C%20SQL%20Server%2C%20Oracle.ipynb)
  - [008 - Redshift - Copy & Unload.ipynb](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/008%20-%20Redshift%20-%20Copy%20%26%20Unload.ipynb)
  - [009 - Redshift - Append, Overwrite and Upsert](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/009%20-%20Redshift%20-%20Append%2C%20Overwrite%2C%20Upsert.ipynb)
  - [010 - Parquet Crawler](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/010%20-%20Parquet%20Crawler.ipynb)
  - [011 - CSV Datasets](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/011%20-%20CSV%20Datasets.ipynb)
  - [012 - CSV Crawler](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/012%20-%20CSV%20Crawler.ipynb)
  - [013 - Merging Datasets on S3](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/013%20-%20Merging%20Datasets%20on%20S3.ipynb)
  - [014 - Schema Evolution](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/014%20-%20Schema%20Evolution.ipynb)
  - [015 - EMR](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/015%20-%20EMR.ipynb)
  - [016 - EMR & Docker](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/016%20-%20EMR%20%26%20Docker.ipynb)
  - [017 - Partition Projection](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/017%20-%20Partition%20Projection.ipynb)
  - [018 - QuickSight](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/018%20-%20QuickSight.ipynb)
  - [019 - Athena Cache](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/019%20-%20Athena%20Cache.ipynb)
  - [020 - Spark Table Interoperability](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/020%20-%20Spark%20Table%20Interoperability.ipynb)
  - [021 - Global Configurations](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/021%20-%20Global%20Configurations.ipynb)
  - [022 - Writing Partitions Concurrently](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/022%20-%20Writing%20Partitions%20Concurrently.ipynb)
  - [023 - Flexible Partitions Filter](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/023%20-%20Flexible%20Partitions%20Filter.ipynb)
  - [024 - Athena Query Metadata](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/024%20-%20Athena%20Query%20Metadata.ipynb)
  - [025 - Redshift - Loading Parquet files with Spectrum](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/025%20-%20Redshift%20-%20Loading%20Parquet%20files%20with%20Spectrum.ipynb)
  - [026 - Amazon Timestream](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/026%20-%20Amazon%20Timestream.ipynb)
  - [027 - Amazon Timestream 2](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/027%20-%20Amazon%20Timestream%202.ipynb)
  - [028 - Amazon DynamoDB](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/028%20-%20DynamoDB.ipynb)
  - [029 - S3 Select](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/029%20-%20S3%20Select.ipynb)
  - [030 - Data Api](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/030%20-%20Data%20Api.ipynb)
  - [031 - OpenSearch](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/031%20-%20OpenSearch.ipynb)
  - [032 - Lake Formation Governed Tables](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/032%20-%20Lake%20Formation%20Governed%20Tables.ipynb)
  - [033 - Amazon Neptune](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/033%20-%20Amazon%20Neptune.ipynb)
  - [034 - Distributing Calls Using Ray](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/034%20-%20Distributing%20Calls%20using%20Ray.ipynb)
  - [035 - Distributing Calls on Ray Remote Cluster](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/035%20-%20Distributing%20Calls%20on%20Ray%20Remote%20Cluster.ipynb)
  - [036 - Distributing Calls with Glue Interactive Sessions on Ray](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/036%20-%20Distributing%20Calls%20with%20Glue%20Interactive%20Sessions%20on%20Ray.ipynb)
  - [037 - Glue Data Quality](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/037%20-%20Glue%20Data%20Quality.ipynb)
  - [038 - OpenSearch Serverless](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/038%20-%20OpenSearch%20Serverless.ipynb)
  - [039 - Athena Iceberg](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/039%20-%20Athena%20Iceberg.ipynb)
- [**API Reference**](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html)
  - [Amazon S3](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-s3)
  - [AWS Glue Catalog](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#aws-glue-catalog)
  - [Amazon Athena](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-athena)
  - [AWS Lake Formation](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#aws-lake-formation)
  - [Amazon Redshift](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-redshift)
  - [PostgreSQL](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#postgresql)
  - [MySQL](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#mysql)
  - [SQL Server](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#sqlserver)
  - [Oracle](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#oracle)
  - [Data API Redshift](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#data-api-redshift)
  - [Data API RDS](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#data-api-rds)
  - [OpenSearch](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#opensearch)
  - [AWS Glue Data Quality](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#aws-glue-data-quality)
  - [Amazon Neptune](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-neptune)
  - [DynamoDB](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#dynamodb)
  - [Amazon Timestream](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-timestream)
  - [Amazon EMR](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-emr)
  - [Amazon CloudWatch Logs](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-cloudwatch-logs)
  - [Amazon Chime](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-chime)
  - [Amazon QuickSight](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-quicksight)
  - [AWS STS](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#aws-sts)
  - [AWS Secrets Manager](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#aws-secrets-manager)
  - [Global Configurations](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#global-configurations)
  - [Distributed - Ray](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#distributed-ray)
- [**License**](https://github.com/aws/aws-sdk-pandas/blob/main/LICENSE.txt)
- [**Contributing**](https://github.com/aws/aws-sdk-pandas/blob/main/CONTRIBUTING.md)

## Getting Help

The best way to interact with our team is through GitHub. You can open an [issue](https://github.com/aws/aws-sdk-pandas/issues/new/choose) and choose from one of our templates for bug reports, feature requests...
You may also find help on these community resources:
* The #aws-sdk-pandas Slack [channel](https://join.slack.com/t/aws-sdk-pandas/shared_invite/zt-sxdx38sl-E0coRfAds8WdpxXD2Nzfrg)
* Ask a question on [Stack Overflow](https://stackoverflow.com/questions/tagged/awswrangler)
  and tag it with `awswrangler`
* [Runbook](https://github.com/aws/aws-sdk-pandas/discussions/1815) for AWS SDK for pandas with Ray

## Community Resources

Please [send a Pull Request](https://github.com/aws/aws-sdk-pandas/edit/main/README.md) with your resource reference and @githubhandle.

- [Optimize Python ETL by extending Pandas with AWS SDK for pandas](https://aws.amazon.com/blogs/big-data/optimize-python-etl-by-extending-pandas-with-aws-data-wrangler/) [[@igorborgest](https://github.com/igorborgest)]
- [Reading Parquet Files With AWS Lambda](https://aprakash.wordpress.com/2020/04/14/reading-parquet-files-with-aws-lambda/) [[@anand086](https://github.com/anand086)]
- [Transform AWS CloudTrail data using AWS SDK for pandas](https://aprakash.wordpress.com/2020/09/17/transform-aws-cloudtrail-data-using-aws-data-wrangler/) [[@anand086](https://github.com/anand086)]
- [Rename Glue Tables using AWS SDK for pandas](https://ananddatastories.com/rename-glue-tables-using-aws-sdk-pandas/) [[@anand086](https://github.com/anand086)]
- [Getting started on AWS SDK for pandas and Athena](https://medium.com/@dheerajsharmainampudi/getting-started-on-aws-sdk-pandas-and-athena-7b446c834076) [[@dheerajsharma21](https://github.com/dheerajsharma21)]
- [Simplifying Pandas integration with AWS data related services](https://medium.com/@bv_subhash/aws-sdk-pandas-simplifying-pandas-integration-with-aws-data-related-services-2b3325c12188) [[@bvsubhash](https://github.com/bvsubhash)]
- [Build an ETL pipeline using AWS S3, Glue and Athena](https://www.linkedin.com/pulse/build-etl-pipeline-using-aws-s3-glue-athena-data-wrangler-tom-reid/) [[@taupirho](https://github.com/taupirho)]

## Logging

Enabling internal logging examples:

```py3
import logging
logging.basicConfig(level=logging.INFO, format="[%(name)s][%(funcName)s] %(message)s")
logging.getLogger("awswrangler").setLevel(logging.DEBUG)
logging.getLogger("botocore.credentials").setLevel(logging.CRITICAL)
```

Into AWS lambda:

```py3
import logging
logging.getLogger("awswrangler").setLevel(logging.DEBUG)
```

## Who uses AWS SDK for pandas?

Knowing which companies are using this library is important to help prioritize the project internally.
If you would like us to include your company’s name and/or logo in the README file to indicate that your company is using the AWS SDK for pandas, please raise a "Support Us" issue. If you would like us to display your company’s logo, please raise a linked pull request to provide an image file for the logo. Note that by raising a Support Us issue (and related pull request), you are granting AWS permission to use your company’s name (and logo) for the limited purpose described here and you are confirming that you have authority to grant such permission.

- [Amazon](https://www.amazon.com/)
- [AWS](https://aws.amazon.com/)
- [Cepsa](https://cepsa.com) [[@alvaropc](https://github.com/alvaropc)]
- [Cognitivo](https://www.cognitivo.ai/) [[@msantino](https://github.com/msantino)]
- [Digio](https://www.digio.com.br/) [[@afonsomy](https://github.com/afonsomy)]
- [DNX](https://www.dnx.solutions/) [[@DNXLabs](https://github.com/DNXLabs)]
- [Fortescue Future Industries](https://ffi.com.au/) [[@spencervoorend](https://github.com/spencervoorend)]
- [Funcional Health Tech](https://www.funcionalcorp.com.br/) [[@webysther](https://github.com/webysther)]
- [Funding Circle](https://www.fundingcircle.com/) [[@pfig](https://github.com/pfig)]
- [Infomach](https://www.infomach.com.br/)
- [Informa Markets](https://www.informamarkets.com/en/home.html) [[@mateusmorato]](http://github.com/mateusmorato)
- [LINE TV](https://www.linetv.tw/) [[@bryanyang0528](https://github.com/bryanyang0528)]
- [Magnataur](https://magnataur.com) [[@brianmingus2](https://github.com/brianmingus2)]
- [M4U](https://www.m4u.com.br/) [[@Thiago-Dantas](https://github.com/Thiago-Dantas)]
- [NBCUniversal](https://www.nbcuniversal.com/) [[@vibe](https://github.com/vibe)]
- [nrd.io](https://nrd.io/) [[@mrtns](https://github.com/mrtns)]
- [OKRA Technologies](https://okra.ai) [[@JPFrancoia](https://github.com/JPFrancoia), [@schot](https://github.com/schot)]
- [Pier](https://www.pier.digital/) [[@flaviomax](https://github.com/flaviomax)]
- [Pismo](https://www.pismo.io/) [[@msantino](https://github.com/msantino)]
- [ringDNA](https://www.ringdna.com/) [[@msropp](https://github.com/msropp)]
- [Serasa Experian](https://www.serasaexperian.com.br/) [[@andre-marcos-perez](https://github.com/andre-marcos-perez)]
- [Shipwell](https://shipwell.com/) [[@zacharycarter](https://github.com/zacharycarter)]
- [strongDM](https://www.strongdm.com/) [[@mrtns](https://github.com/mrtns)]
- [Thinkbumblebee](https://www.thinkbumblebee.com/) [[@dheerajsharma21]](https://github.com/dheerajsharma21)
- [VTEX](https://vtex.com/us-en/) [[@igorborgest]](https://github.com/igorborgest)
- [Zillow](https://www.zillow.com/) [[@nicholas-miles]](https://github.com/nicholas-miles)


%package -n python3-awswrangler
Summary:	Pandas on AWS.
Provides:	python-awswrangler
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-awswrangler
# AWS SDK for pandas (awswrangler)

AWS Data Wrangler is now **AWS SDK for pandas (awswrangler)**.  We’re changing the name we use when we talk about the library, but everything else will stay the same.  You’ll still be able to install using `pip install awswrangler` and you won’t need to change any of your code.  As part of this change, we’ve moved the library from AWS Labs to the main AWS GitHub organisation but, thanks to the GitHub’s redirect feature, you’ll still be able to access the project by its old URLs until you update your bookmarks.  Our documentation has also moved to [aws-sdk-pandas.readthedocs.io](https://aws-sdk-pandas.readthedocs.io), but old bookmarks will redirect to the new site.

*Pandas on AWS*

Easy integration with Athena, Glue, Redshift, Timestream, OpenSearch, Neptune, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).

![AWS SDK for pandas](docs/source/_static/logo2.png?raw=true "AWS SDK for pandas")
![tracker](https://d3tiqpr4kkkomd.cloudfront.net/img/pixel.png?asset=GVOYN2BOOQ573LTVIHEW)

> An [AWS Professional Service](https://aws.amazon.com/professional-services/) open source initiative | aws-proserve-opensource@amazon.com

[![Release](https://img.shields.io/badge/3.0.0-brightgreen.svg)](https://pypi.org/project/awswrangler/)
[![Python Version](https://img.shields.io/badge/python-3.8%20%7C%203.8%20%7C%203.9%20%7C%203.10-brightgreen.svg)](https://anaconda.org/conda-forge/awswrangler)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)

[![Checked with mypy](http://www.mypy-lang.org/static/mypy_badge.svg)](http://mypy-lang.org/)
![Static Checking](https://github.com/aws/aws-sdk-pandas/workflows/Static%20Checking/badge.svg?branch=main)
[![Documentation Status](https://readthedocs.org/projects/aws-sdk-pandas/badge/?version=latest)](https://aws-sdk-pandas.readthedocs.io/?badge=latest)

| Source | Downloads | Installation Command |
|--------|-----------|----------------------|
| **[PyPi](https://pypi.org/project/awswrangler/)**  | [![PyPI Downloads](https://pepy.tech/badge/awswrangler)](https://pypi.org/project/awswrangler/) | `pip install awswrangler` |
| **[Conda](https://anaconda.org/conda-forge/awswrangler)** | [![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/awswrangler.svg)](https://anaconda.org/conda-forge/awswrangler) | `conda install -c conda-forge awswrangler` |

> ⚠️ **Starting version 3.0, optional modules must be installed explicitly:**<br>
➡️`pip install 'awswrangler[redshift]'`

Powered By [<img src="https://arrow.apache.org/img/arrow.png" width="200">](https://arrow.apache.org/powered_by/)

## Table of contents

- [Quick Start](#quick-start)
- [At Scale](#at-scale)
- [Read The Docs](#read-the-docs)
- [Getting Help](#getting-help)
- [Community Resources](#community-resources)
- [Logging](#logging)
- [Who uses AWS SDK for pandas?](#who-uses-aws-sdk-pandas)

## Quick Start

Installation command: `pip install awswrangler`

> ⚠️ **Starting version 3.0, optional modules must be installed explicitly:**<br>
➡️`pip install 'awswrangler[redshift]'`

```py3
import awswrangler as wr
import pandas as pd
from datetime import datetime

df = pd.DataFrame({"id": [1, 2], "value": ["foo", "boo"]})

# Storing data on Data Lake
wr.s3.to_parquet(
    df=df,
    path="s3://bucket/dataset/",
    dataset=True,
    database="my_db",
    table="my_table"
)

# Retrieving the data directly from Amazon S3
df = wr.s3.read_parquet("s3://bucket/dataset/", dataset=True)

# Retrieving the data from Amazon Athena
df = wr.athena.read_sql_query("SELECT * FROM my_table", database="my_db")

# Get a Redshift connection from Glue Catalog and retrieving data from Redshift Spectrum
con = wr.redshift.connect("my-glue-connection")
df = wr.redshift.read_sql_query("SELECT * FROM external_schema.my_table", con=con)
con.close()

# Amazon Timestream Write
df = pd.DataFrame({
    "time": [datetime.now(), datetime.now()],   
    "my_dimension": ["foo", "boo"],
    "measure": [1.0, 1.1],
})
rejected_records = wr.timestream.write(df,
    database="sampleDB",
    table="sampleTable",
    time_col="time",
    measure_col="measure",
    dimensions_cols=["my_dimension"],
)

# Amazon Timestream Query
wr.timestream.query("""
SELECT time, measure_value::double, my_dimension
FROM "sampleDB"."sampleTable" ORDER BY time DESC LIMIT 3
""")

```

## At scale
AWS SDK for pandas can also run your workflows at scale by leveraging [Modin](https://modin.readthedocs.io/en/stable/) and [Ray](https://www.ray.io/). Both projects aim to speed up data workloads by distributing processing over a cluster of workers.

The quickest way to get started is to use AWS Glue with Ray. Read our [docs](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/scale.html), our [blog](https://aws.amazon.com/blogs/big-data/scale-aws-sdk-for-pandas-workloads-with-aws-glue-for-ray/), or head to our latest [tutorials](https://github.com/aws/aws-sdk-pandas/tree/main/tutorials) to discover even more features.

## [Read The Docs](https://aws-sdk-pandas.readthedocs.io/)

- [**What is AWS SDK for pandas?**](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/what.html)
- [**Install**](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html)
  - [PyPi (pip)](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#pypi-pip)
  - [Conda](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#conda)
  - [AWS Lambda Layer](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#aws-lambda-layer)
  - [AWS Glue Python Shell Jobs](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#aws-glue-python-shell-jobs)
  - [AWS Glue PySpark Jobs](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#aws-glue-pyspark-jobs)
  - [Amazon SageMaker Notebook](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#amazon-sagemaker-notebook)
  - [Amazon SageMaker Notebook Lifecycle](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#amazon-sagemaker-notebook-lifecycle)
  - [EMR](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#emr)
  - [From source](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#from-source)
- [**At scale**](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/scale.html)
  - [Getting Started](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/scale.html#getting-started)
  - [Supported APIs](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/scale.html#supported-apis)
  - [Resources](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/scale.html#resources)
- [**Tutorials**](https://github.com/aws/aws-sdk-pandas/tree/main/tutorials)
  - [001 - Introduction](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/001%20-%20Introduction.ipynb)
  - [002 - Sessions](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/002%20-%20Sessions.ipynb)
  - [003 - Amazon S3](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/003%20-%20Amazon%20S3.ipynb)
  - [004 - Parquet Datasets](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/004%20-%20Parquet%20Datasets.ipynb)
  - [005 - Glue Catalog](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/005%20-%20Glue%20Catalog.ipynb)
  - [006 - Amazon Athena](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/006%20-%20Amazon%20Athena.ipynb)
  - [007 - Databases (Redshift, MySQL, PostgreSQL, SQL Server and Oracle)](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/007%20-%20Redshift%2C%20MySQL%2C%20PostgreSQL%2C%20SQL%20Server%2C%20Oracle.ipynb)
  - [008 - Redshift - Copy & Unload.ipynb](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/008%20-%20Redshift%20-%20Copy%20%26%20Unload.ipynb)
  - [009 - Redshift - Append, Overwrite and Upsert](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/009%20-%20Redshift%20-%20Append%2C%20Overwrite%2C%20Upsert.ipynb)
  - [010 - Parquet Crawler](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/010%20-%20Parquet%20Crawler.ipynb)
  - [011 - CSV Datasets](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/011%20-%20CSV%20Datasets.ipynb)
  - [012 - CSV Crawler](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/012%20-%20CSV%20Crawler.ipynb)
  - [013 - Merging Datasets on S3](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/013%20-%20Merging%20Datasets%20on%20S3.ipynb)
  - [014 - Schema Evolution](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/014%20-%20Schema%20Evolution.ipynb)
  - [015 - EMR](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/015%20-%20EMR.ipynb)
  - [016 - EMR & Docker](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/016%20-%20EMR%20%26%20Docker.ipynb)
  - [017 - Partition Projection](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/017%20-%20Partition%20Projection.ipynb)
  - [018 - QuickSight](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/018%20-%20QuickSight.ipynb)
  - [019 - Athena Cache](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/019%20-%20Athena%20Cache.ipynb)
  - [020 - Spark Table Interoperability](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/020%20-%20Spark%20Table%20Interoperability.ipynb)
  - [021 - Global Configurations](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/021%20-%20Global%20Configurations.ipynb)
  - [022 - Writing Partitions Concurrently](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/022%20-%20Writing%20Partitions%20Concurrently.ipynb)
  - [023 - Flexible Partitions Filter](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/023%20-%20Flexible%20Partitions%20Filter.ipynb)
  - [024 - Athena Query Metadata](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/024%20-%20Athena%20Query%20Metadata.ipynb)
  - [025 - Redshift - Loading Parquet files with Spectrum](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/025%20-%20Redshift%20-%20Loading%20Parquet%20files%20with%20Spectrum.ipynb)
  - [026 - Amazon Timestream](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/026%20-%20Amazon%20Timestream.ipynb)
  - [027 - Amazon Timestream 2](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/027%20-%20Amazon%20Timestream%202.ipynb)
  - [028 - Amazon DynamoDB](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/028%20-%20DynamoDB.ipynb)
  - [029 - S3 Select](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/029%20-%20S3%20Select.ipynb)
  - [030 - Data Api](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/030%20-%20Data%20Api.ipynb)
  - [031 - OpenSearch](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/031%20-%20OpenSearch.ipynb)
  - [032 - Lake Formation Governed Tables](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/032%20-%20Lake%20Formation%20Governed%20Tables.ipynb)
  - [033 - Amazon Neptune](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/033%20-%20Amazon%20Neptune.ipynb)
  - [034 - Distributing Calls Using Ray](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/034%20-%20Distributing%20Calls%20using%20Ray.ipynb)
  - [035 - Distributing Calls on Ray Remote Cluster](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/035%20-%20Distributing%20Calls%20on%20Ray%20Remote%20Cluster.ipynb)
  - [036 - Distributing Calls with Glue Interactive Sessions on Ray](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/036%20-%20Distributing%20Calls%20with%20Glue%20Interactive%20Sessions%20on%20Ray.ipynb)
  - [037 - Glue Data Quality](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/037%20-%20Glue%20Data%20Quality.ipynb)
  - [038 - OpenSearch Serverless](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/038%20-%20OpenSearch%20Serverless.ipynb)
  - [039 - Athena Iceberg](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/039%20-%20Athena%20Iceberg.ipynb)
- [**API Reference**](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html)
  - [Amazon S3](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-s3)
  - [AWS Glue Catalog](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#aws-glue-catalog)
  - [Amazon Athena](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-athena)
  - [AWS Lake Formation](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#aws-lake-formation)
  - [Amazon Redshift](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-redshift)
  - [PostgreSQL](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#postgresql)
  - [MySQL](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#mysql)
  - [SQL Server](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#sqlserver)
  - [Oracle](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#oracle)
  - [Data API Redshift](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#data-api-redshift)
  - [Data API RDS](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#data-api-rds)
  - [OpenSearch](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#opensearch)
  - [AWS Glue Data Quality](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#aws-glue-data-quality)
  - [Amazon Neptune](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-neptune)
  - [DynamoDB](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#dynamodb)
  - [Amazon Timestream](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-timestream)
  - [Amazon EMR](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-emr)
  - [Amazon CloudWatch Logs](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-cloudwatch-logs)
  - [Amazon Chime](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-chime)
  - [Amazon QuickSight](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-quicksight)
  - [AWS STS](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#aws-sts)
  - [AWS Secrets Manager](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#aws-secrets-manager)
  - [Global Configurations](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#global-configurations)
  - [Distributed - Ray](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#distributed-ray)
- [**License**](https://github.com/aws/aws-sdk-pandas/blob/main/LICENSE.txt)
- [**Contributing**](https://github.com/aws/aws-sdk-pandas/blob/main/CONTRIBUTING.md)

## Getting Help

The best way to interact with our team is through GitHub. You can open an [issue](https://github.com/aws/aws-sdk-pandas/issues/new/choose) and choose from one of our templates for bug reports, feature requests...
You may also find help on these community resources:
* The #aws-sdk-pandas Slack [channel](https://join.slack.com/t/aws-sdk-pandas/shared_invite/zt-sxdx38sl-E0coRfAds8WdpxXD2Nzfrg)
* Ask a question on [Stack Overflow](https://stackoverflow.com/questions/tagged/awswrangler)
  and tag it with `awswrangler`
* [Runbook](https://github.com/aws/aws-sdk-pandas/discussions/1815) for AWS SDK for pandas with Ray

## Community Resources

Please [send a Pull Request](https://github.com/aws/aws-sdk-pandas/edit/main/README.md) with your resource reference and @githubhandle.

- [Optimize Python ETL by extending Pandas with AWS SDK for pandas](https://aws.amazon.com/blogs/big-data/optimize-python-etl-by-extending-pandas-with-aws-data-wrangler/) [[@igorborgest](https://github.com/igorborgest)]
- [Reading Parquet Files With AWS Lambda](https://aprakash.wordpress.com/2020/04/14/reading-parquet-files-with-aws-lambda/) [[@anand086](https://github.com/anand086)]
- [Transform AWS CloudTrail data using AWS SDK for pandas](https://aprakash.wordpress.com/2020/09/17/transform-aws-cloudtrail-data-using-aws-data-wrangler/) [[@anand086](https://github.com/anand086)]
- [Rename Glue Tables using AWS SDK for pandas](https://ananddatastories.com/rename-glue-tables-using-aws-sdk-pandas/) [[@anand086](https://github.com/anand086)]
- [Getting started on AWS SDK for pandas and Athena](https://medium.com/@dheerajsharmainampudi/getting-started-on-aws-sdk-pandas-and-athena-7b446c834076) [[@dheerajsharma21](https://github.com/dheerajsharma21)]
- [Simplifying Pandas integration with AWS data related services](https://medium.com/@bv_subhash/aws-sdk-pandas-simplifying-pandas-integration-with-aws-data-related-services-2b3325c12188) [[@bvsubhash](https://github.com/bvsubhash)]
- [Build an ETL pipeline using AWS S3, Glue and Athena](https://www.linkedin.com/pulse/build-etl-pipeline-using-aws-s3-glue-athena-data-wrangler-tom-reid/) [[@taupirho](https://github.com/taupirho)]

## Logging

Enabling internal logging examples:

```py3
import logging
logging.basicConfig(level=logging.INFO, format="[%(name)s][%(funcName)s] %(message)s")
logging.getLogger("awswrangler").setLevel(logging.DEBUG)
logging.getLogger("botocore.credentials").setLevel(logging.CRITICAL)
```

Into AWS lambda:

```py3
import logging
logging.getLogger("awswrangler").setLevel(logging.DEBUG)
```

## Who uses AWS SDK for pandas?

Knowing which companies are using this library is important to help prioritize the project internally.
If you would like us to include your company’s name and/or logo in the README file to indicate that your company is using the AWS SDK for pandas, please raise a "Support Us" issue. If you would like us to display your company’s logo, please raise a linked pull request to provide an image file for the logo. Note that by raising a Support Us issue (and related pull request), you are granting AWS permission to use your company’s name (and logo) for the limited purpose described here and you are confirming that you have authority to grant such permission.

- [Amazon](https://www.amazon.com/)
- [AWS](https://aws.amazon.com/)
- [Cepsa](https://cepsa.com) [[@alvaropc](https://github.com/alvaropc)]
- [Cognitivo](https://www.cognitivo.ai/) [[@msantino](https://github.com/msantino)]
- [Digio](https://www.digio.com.br/) [[@afonsomy](https://github.com/afonsomy)]
- [DNX](https://www.dnx.solutions/) [[@DNXLabs](https://github.com/DNXLabs)]
- [Fortescue Future Industries](https://ffi.com.au/) [[@spencervoorend](https://github.com/spencervoorend)]
- [Funcional Health Tech](https://www.funcionalcorp.com.br/) [[@webysther](https://github.com/webysther)]
- [Funding Circle](https://www.fundingcircle.com/) [[@pfig](https://github.com/pfig)]
- [Infomach](https://www.infomach.com.br/)
- [Informa Markets](https://www.informamarkets.com/en/home.html) [[@mateusmorato]](http://github.com/mateusmorato)
- [LINE TV](https://www.linetv.tw/) [[@bryanyang0528](https://github.com/bryanyang0528)]
- [Magnataur](https://magnataur.com) [[@brianmingus2](https://github.com/brianmingus2)]
- [M4U](https://www.m4u.com.br/) [[@Thiago-Dantas](https://github.com/Thiago-Dantas)]
- [NBCUniversal](https://www.nbcuniversal.com/) [[@vibe](https://github.com/vibe)]
- [nrd.io](https://nrd.io/) [[@mrtns](https://github.com/mrtns)]
- [OKRA Technologies](https://okra.ai) [[@JPFrancoia](https://github.com/JPFrancoia), [@schot](https://github.com/schot)]
- [Pier](https://www.pier.digital/) [[@flaviomax](https://github.com/flaviomax)]
- [Pismo](https://www.pismo.io/) [[@msantino](https://github.com/msantino)]
- [ringDNA](https://www.ringdna.com/) [[@msropp](https://github.com/msropp)]
- [Serasa Experian](https://www.serasaexperian.com.br/) [[@andre-marcos-perez](https://github.com/andre-marcos-perez)]
- [Shipwell](https://shipwell.com/) [[@zacharycarter](https://github.com/zacharycarter)]
- [strongDM](https://www.strongdm.com/) [[@mrtns](https://github.com/mrtns)]
- [Thinkbumblebee](https://www.thinkbumblebee.com/) [[@dheerajsharma21]](https://github.com/dheerajsharma21)
- [VTEX](https://vtex.com/us-en/) [[@igorborgest]](https://github.com/igorborgest)
- [Zillow](https://www.zillow.com/) [[@nicholas-miles]](https://github.com/nicholas-miles)


%package help
Summary:	Development documents and examples for awswrangler
Provides:	python3-awswrangler-doc
%description help
# AWS SDK for pandas (awswrangler)

AWS Data Wrangler is now **AWS SDK for pandas (awswrangler)**.  We’re changing the name we use when we talk about the library, but everything else will stay the same.  You’ll still be able to install using `pip install awswrangler` and you won’t need to change any of your code.  As part of this change, we’ve moved the library from AWS Labs to the main AWS GitHub organisation but, thanks to the GitHub’s redirect feature, you’ll still be able to access the project by its old URLs until you update your bookmarks.  Our documentation has also moved to [aws-sdk-pandas.readthedocs.io](https://aws-sdk-pandas.readthedocs.io), but old bookmarks will redirect to the new site.

*Pandas on AWS*

Easy integration with Athena, Glue, Redshift, Timestream, OpenSearch, Neptune, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).

![AWS SDK for pandas](docs/source/_static/logo2.png?raw=true "AWS SDK for pandas")
![tracker](https://d3tiqpr4kkkomd.cloudfront.net/img/pixel.png?asset=GVOYN2BOOQ573LTVIHEW)

> An [AWS Professional Service](https://aws.amazon.com/professional-services/) open source initiative | aws-proserve-opensource@amazon.com

[![Release](https://img.shields.io/badge/3.0.0-brightgreen.svg)](https://pypi.org/project/awswrangler/)
[![Python Version](https://img.shields.io/badge/python-3.8%20%7C%203.8%20%7C%203.9%20%7C%203.10-brightgreen.svg)](https://anaconda.org/conda-forge/awswrangler)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)

[![Checked with mypy](http://www.mypy-lang.org/static/mypy_badge.svg)](http://mypy-lang.org/)
![Static Checking](https://github.com/aws/aws-sdk-pandas/workflows/Static%20Checking/badge.svg?branch=main)
[![Documentation Status](https://readthedocs.org/projects/aws-sdk-pandas/badge/?version=latest)](https://aws-sdk-pandas.readthedocs.io/?badge=latest)

| Source | Downloads | Installation Command |
|--------|-----------|----------------------|
| **[PyPi](https://pypi.org/project/awswrangler/)**  | [![PyPI Downloads](https://pepy.tech/badge/awswrangler)](https://pypi.org/project/awswrangler/) | `pip install awswrangler` |
| **[Conda](https://anaconda.org/conda-forge/awswrangler)** | [![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/awswrangler.svg)](https://anaconda.org/conda-forge/awswrangler) | `conda install -c conda-forge awswrangler` |

> ⚠️ **Starting version 3.0, optional modules must be installed explicitly:**<br>
➡️`pip install 'awswrangler[redshift]'`

Powered By [<img src="https://arrow.apache.org/img/arrow.png" width="200">](https://arrow.apache.org/powered_by/)

## Table of contents

- [Quick Start](#quick-start)
- [At Scale](#at-scale)
- [Read The Docs](#read-the-docs)
- [Getting Help](#getting-help)
- [Community Resources](#community-resources)
- [Logging](#logging)
- [Who uses AWS SDK for pandas?](#who-uses-aws-sdk-pandas)

## Quick Start

Installation command: `pip install awswrangler`

> ⚠️ **Starting version 3.0, optional modules must be installed explicitly:**<br>
➡️`pip install 'awswrangler[redshift]'`

```py3
import awswrangler as wr
import pandas as pd
from datetime import datetime

df = pd.DataFrame({"id": [1, 2], "value": ["foo", "boo"]})

# Storing data on Data Lake
wr.s3.to_parquet(
    df=df,
    path="s3://bucket/dataset/",
    dataset=True,
    database="my_db",
    table="my_table"
)

# Retrieving the data directly from Amazon S3
df = wr.s3.read_parquet("s3://bucket/dataset/", dataset=True)

# Retrieving the data from Amazon Athena
df = wr.athena.read_sql_query("SELECT * FROM my_table", database="my_db")

# Get a Redshift connection from Glue Catalog and retrieving data from Redshift Spectrum
con = wr.redshift.connect("my-glue-connection")
df = wr.redshift.read_sql_query("SELECT * FROM external_schema.my_table", con=con)
con.close()

# Amazon Timestream Write
df = pd.DataFrame({
    "time": [datetime.now(), datetime.now()],   
    "my_dimension": ["foo", "boo"],
    "measure": [1.0, 1.1],
})
rejected_records = wr.timestream.write(df,
    database="sampleDB",
    table="sampleTable",
    time_col="time",
    measure_col="measure",
    dimensions_cols=["my_dimension"],
)

# Amazon Timestream Query
wr.timestream.query("""
SELECT time, measure_value::double, my_dimension
FROM "sampleDB"."sampleTable" ORDER BY time DESC LIMIT 3
""")

```

## At scale
AWS SDK for pandas can also run your workflows at scale by leveraging [Modin](https://modin.readthedocs.io/en/stable/) and [Ray](https://www.ray.io/). Both projects aim to speed up data workloads by distributing processing over a cluster of workers.

The quickest way to get started is to use AWS Glue with Ray. Read our [docs](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/scale.html), our [blog](https://aws.amazon.com/blogs/big-data/scale-aws-sdk-for-pandas-workloads-with-aws-glue-for-ray/), or head to our latest [tutorials](https://github.com/aws/aws-sdk-pandas/tree/main/tutorials) to discover even more features.

## [Read The Docs](https://aws-sdk-pandas.readthedocs.io/)

- [**What is AWS SDK for pandas?**](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/what.html)
- [**Install**](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html)
  - [PyPi (pip)](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#pypi-pip)
  - [Conda](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#conda)
  - [AWS Lambda Layer](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#aws-lambda-layer)
  - [AWS Glue Python Shell Jobs](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#aws-glue-python-shell-jobs)
  - [AWS Glue PySpark Jobs](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#aws-glue-pyspark-jobs)
  - [Amazon SageMaker Notebook](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#amazon-sagemaker-notebook)
  - [Amazon SageMaker Notebook Lifecycle](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#amazon-sagemaker-notebook-lifecycle)
  - [EMR](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#emr)
  - [From source](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/install.html#from-source)
- [**At scale**](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/scale.html)
  - [Getting Started](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/scale.html#getting-started)
  - [Supported APIs](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/scale.html#supported-apis)
  - [Resources](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/scale.html#resources)
- [**Tutorials**](https://github.com/aws/aws-sdk-pandas/tree/main/tutorials)
  - [001 - Introduction](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/001%20-%20Introduction.ipynb)
  - [002 - Sessions](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/002%20-%20Sessions.ipynb)
  - [003 - Amazon S3](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/003%20-%20Amazon%20S3.ipynb)
  - [004 - Parquet Datasets](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/004%20-%20Parquet%20Datasets.ipynb)
  - [005 - Glue Catalog](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/005%20-%20Glue%20Catalog.ipynb)
  - [006 - Amazon Athena](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/006%20-%20Amazon%20Athena.ipynb)
  - [007 - Databases (Redshift, MySQL, PostgreSQL, SQL Server and Oracle)](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/007%20-%20Redshift%2C%20MySQL%2C%20PostgreSQL%2C%20SQL%20Server%2C%20Oracle.ipynb)
  - [008 - Redshift - Copy & Unload.ipynb](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/008%20-%20Redshift%20-%20Copy%20%26%20Unload.ipynb)
  - [009 - Redshift - Append, Overwrite and Upsert](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/009%20-%20Redshift%20-%20Append%2C%20Overwrite%2C%20Upsert.ipynb)
  - [010 - Parquet Crawler](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/010%20-%20Parquet%20Crawler.ipynb)
  - [011 - CSV Datasets](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/011%20-%20CSV%20Datasets.ipynb)
  - [012 - CSV Crawler](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/012%20-%20CSV%20Crawler.ipynb)
  - [013 - Merging Datasets on S3](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/013%20-%20Merging%20Datasets%20on%20S3.ipynb)
  - [014 - Schema Evolution](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/014%20-%20Schema%20Evolution.ipynb)
  - [015 - EMR](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/015%20-%20EMR.ipynb)
  - [016 - EMR & Docker](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/016%20-%20EMR%20%26%20Docker.ipynb)
  - [017 - Partition Projection](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/017%20-%20Partition%20Projection.ipynb)
  - [018 - QuickSight](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/018%20-%20QuickSight.ipynb)
  - [019 - Athena Cache](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/019%20-%20Athena%20Cache.ipynb)
  - [020 - Spark Table Interoperability](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/020%20-%20Spark%20Table%20Interoperability.ipynb)
  - [021 - Global Configurations](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/021%20-%20Global%20Configurations.ipynb)
  - [022 - Writing Partitions Concurrently](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/022%20-%20Writing%20Partitions%20Concurrently.ipynb)
  - [023 - Flexible Partitions Filter](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/023%20-%20Flexible%20Partitions%20Filter.ipynb)
  - [024 - Athena Query Metadata](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/024%20-%20Athena%20Query%20Metadata.ipynb)
  - [025 - Redshift - Loading Parquet files with Spectrum](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/025%20-%20Redshift%20-%20Loading%20Parquet%20files%20with%20Spectrum.ipynb)
  - [026 - Amazon Timestream](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/026%20-%20Amazon%20Timestream.ipynb)
  - [027 - Amazon Timestream 2](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/027%20-%20Amazon%20Timestream%202.ipynb)
  - [028 - Amazon DynamoDB](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/028%20-%20DynamoDB.ipynb)
  - [029 - S3 Select](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/029%20-%20S3%20Select.ipynb)
  - [030 - Data Api](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/030%20-%20Data%20Api.ipynb)
  - [031 - OpenSearch](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/031%20-%20OpenSearch.ipynb)
  - [032 - Lake Formation Governed Tables](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/032%20-%20Lake%20Formation%20Governed%20Tables.ipynb)
  - [033 - Amazon Neptune](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/033%20-%20Amazon%20Neptune.ipynb)
  - [034 - Distributing Calls Using Ray](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/034%20-%20Distributing%20Calls%20using%20Ray.ipynb)
  - [035 - Distributing Calls on Ray Remote Cluster](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/035%20-%20Distributing%20Calls%20on%20Ray%20Remote%20Cluster.ipynb)
  - [036 - Distributing Calls with Glue Interactive Sessions on Ray](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/036%20-%20Distributing%20Calls%20with%20Glue%20Interactive%20Sessions%20on%20Ray.ipynb)
  - [037 - Glue Data Quality](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/037%20-%20Glue%20Data%20Quality.ipynb)
  - [038 - OpenSearch Serverless](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/038%20-%20OpenSearch%20Serverless.ipynb)
  - [039 - Athena Iceberg](https://github.com/aws/aws-sdk-pandas/blob/main/tutorials/039%20-%20Athena%20Iceberg.ipynb)
- [**API Reference**](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html)
  - [Amazon S3](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-s3)
  - [AWS Glue Catalog](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#aws-glue-catalog)
  - [Amazon Athena](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-athena)
  - [AWS Lake Formation](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#aws-lake-formation)
  - [Amazon Redshift](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-redshift)
  - [PostgreSQL](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#postgresql)
  - [MySQL](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#mysql)
  - [SQL Server](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#sqlserver)
  - [Oracle](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#oracle)
  - [Data API Redshift](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#data-api-redshift)
  - [Data API RDS](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#data-api-rds)
  - [OpenSearch](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#opensearch)
  - [AWS Glue Data Quality](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#aws-glue-data-quality)
  - [Amazon Neptune](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-neptune)
  - [DynamoDB](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#dynamodb)
  - [Amazon Timestream](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-timestream)
  - [Amazon EMR](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-emr)
  - [Amazon CloudWatch Logs](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-cloudwatch-logs)
  - [Amazon Chime](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-chime)
  - [Amazon QuickSight](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#amazon-quicksight)
  - [AWS STS](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#aws-sts)
  - [AWS Secrets Manager](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#aws-secrets-manager)
  - [Global Configurations](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#global-configurations)
  - [Distributed - Ray](https://aws-sdk-pandas.readthedocs.io/en/3.0.0/api.html#distributed-ray)
- [**License**](https://github.com/aws/aws-sdk-pandas/blob/main/LICENSE.txt)
- [**Contributing**](https://github.com/aws/aws-sdk-pandas/blob/main/CONTRIBUTING.md)

## Getting Help

The best way to interact with our team is through GitHub. You can open an [issue](https://github.com/aws/aws-sdk-pandas/issues/new/choose) and choose from one of our templates for bug reports, feature requests...
You may also find help on these community resources:
* The #aws-sdk-pandas Slack [channel](https://join.slack.com/t/aws-sdk-pandas/shared_invite/zt-sxdx38sl-E0coRfAds8WdpxXD2Nzfrg)
* Ask a question on [Stack Overflow](https://stackoverflow.com/questions/tagged/awswrangler)
  and tag it with `awswrangler`
* [Runbook](https://github.com/aws/aws-sdk-pandas/discussions/1815) for AWS SDK for pandas with Ray

## Community Resources

Please [send a Pull Request](https://github.com/aws/aws-sdk-pandas/edit/main/README.md) with your resource reference and @githubhandle.

- [Optimize Python ETL by extending Pandas with AWS SDK for pandas](https://aws.amazon.com/blogs/big-data/optimize-python-etl-by-extending-pandas-with-aws-data-wrangler/) [[@igorborgest](https://github.com/igorborgest)]
- [Reading Parquet Files With AWS Lambda](https://aprakash.wordpress.com/2020/04/14/reading-parquet-files-with-aws-lambda/) [[@anand086](https://github.com/anand086)]
- [Transform AWS CloudTrail data using AWS SDK for pandas](https://aprakash.wordpress.com/2020/09/17/transform-aws-cloudtrail-data-using-aws-data-wrangler/) [[@anand086](https://github.com/anand086)]
- [Rename Glue Tables using AWS SDK for pandas](https://ananddatastories.com/rename-glue-tables-using-aws-sdk-pandas/) [[@anand086](https://github.com/anand086)]
- [Getting started on AWS SDK for pandas and Athena](https://medium.com/@dheerajsharmainampudi/getting-started-on-aws-sdk-pandas-and-athena-7b446c834076) [[@dheerajsharma21](https://github.com/dheerajsharma21)]
- [Simplifying Pandas integration with AWS data related services](https://medium.com/@bv_subhash/aws-sdk-pandas-simplifying-pandas-integration-with-aws-data-related-services-2b3325c12188) [[@bvsubhash](https://github.com/bvsubhash)]
- [Build an ETL pipeline using AWS S3, Glue and Athena](https://www.linkedin.com/pulse/build-etl-pipeline-using-aws-s3-glue-athena-data-wrangler-tom-reid/) [[@taupirho](https://github.com/taupirho)]

## Logging

Enabling internal logging examples:

```py3
import logging
logging.basicConfig(level=logging.INFO, format="[%(name)s][%(funcName)s] %(message)s")
logging.getLogger("awswrangler").setLevel(logging.DEBUG)
logging.getLogger("botocore.credentials").setLevel(logging.CRITICAL)
```

Into AWS lambda:

```py3
import logging
logging.getLogger("awswrangler").setLevel(logging.DEBUG)
```

## Who uses AWS SDK for pandas?

Knowing which companies are using this library is important to help prioritize the project internally.
If you would like us to include your company’s name and/or logo in the README file to indicate that your company is using the AWS SDK for pandas, please raise a "Support Us" issue. If you would like us to display your company’s logo, please raise a linked pull request to provide an image file for the logo. Note that by raising a Support Us issue (and related pull request), you are granting AWS permission to use your company’s name (and logo) for the limited purpose described here and you are confirming that you have authority to grant such permission.

- [Amazon](https://www.amazon.com/)
- [AWS](https://aws.amazon.com/)
- [Cepsa](https://cepsa.com) [[@alvaropc](https://github.com/alvaropc)]
- [Cognitivo](https://www.cognitivo.ai/) [[@msantino](https://github.com/msantino)]
- [Digio](https://www.digio.com.br/) [[@afonsomy](https://github.com/afonsomy)]
- [DNX](https://www.dnx.solutions/) [[@DNXLabs](https://github.com/DNXLabs)]
- [Fortescue Future Industries](https://ffi.com.au/) [[@spencervoorend](https://github.com/spencervoorend)]
- [Funcional Health Tech](https://www.funcionalcorp.com.br/) [[@webysther](https://github.com/webysther)]
- [Funding Circle](https://www.fundingcircle.com/) [[@pfig](https://github.com/pfig)]
- [Infomach](https://www.infomach.com.br/)
- [Informa Markets](https://www.informamarkets.com/en/home.html) [[@mateusmorato]](http://github.com/mateusmorato)
- [LINE TV](https://www.linetv.tw/) [[@bryanyang0528](https://github.com/bryanyang0528)]
- [Magnataur](https://magnataur.com) [[@brianmingus2](https://github.com/brianmingus2)]
- [M4U](https://www.m4u.com.br/) [[@Thiago-Dantas](https://github.com/Thiago-Dantas)]
- [NBCUniversal](https://www.nbcuniversal.com/) [[@vibe](https://github.com/vibe)]
- [nrd.io](https://nrd.io/) [[@mrtns](https://github.com/mrtns)]
- [OKRA Technologies](https://okra.ai) [[@JPFrancoia](https://github.com/JPFrancoia), [@schot](https://github.com/schot)]
- [Pier](https://www.pier.digital/) [[@flaviomax](https://github.com/flaviomax)]
- [Pismo](https://www.pismo.io/) [[@msantino](https://github.com/msantino)]
- [ringDNA](https://www.ringdna.com/) [[@msropp](https://github.com/msropp)]
- [Serasa Experian](https://www.serasaexperian.com.br/) [[@andre-marcos-perez](https://github.com/andre-marcos-perez)]
- [Shipwell](https://shipwell.com/) [[@zacharycarter](https://github.com/zacharycarter)]
- [strongDM](https://www.strongdm.com/) [[@mrtns](https://github.com/mrtns)]
- [Thinkbumblebee](https://www.thinkbumblebee.com/) [[@dheerajsharma21]](https://github.com/dheerajsharma21)
- [VTEX](https://vtex.com/us-en/) [[@igorborgest]](https://github.com/igorborgest)
- [Zillow](https://www.zillow.com/) [[@nicholas-miles]](https://github.com/nicholas-miles)


%prep
%autosetup -n awswrangler-3.0.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-awswrangler -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Apr 21 2023 Python_Bot <Python_Bot@openeuler.org> - 3.0.0-1
- Package Spec generated