summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-ax-platform.spec699
-rw-r--r--sources1
3 files changed, 701 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..514e09c 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/ax-platform-0.3.1.tar.gz
diff --git a/python-ax-platform.spec b/python-ax-platform.spec
new file mode 100644
index 0000000..442092c
--- /dev/null
+++ b/python-ax-platform.spec
@@ -0,0 +1,699 @@
+%global _empty_manifest_terminate_build 0
+Name: python-ax-platform
+Version: 0.3.1
+Release: 1
+Summary: Adaptive Experimentation
+License: MIT
+URL: https://github.com/facebook/Ax
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/ff/dd/dea40f9e710c1c588ff9cc804c8f12c8497d064149c29eca3f4e2983f236/ax-platform-0.3.1.tar.gz
+BuildArch: noarch
+
+Requires: python3-botorch
+Requires: python3-jinja2
+Requires: python3-pandas
+Requires: python3-scipy
+Requires: python3-scikit-learn
+Requires: python3-ipywidgets
+Requires: python3-plotly
+Requires: python3-typeguard
+Requires: python3-beautifulsoup4
+Requires: python3-black
+Requires: python3-flake8
+Requires: python3-hypothesis
+Requires: python3-Jinja2
+Requires: python3-pyfakefs
+Requires: python3-pytest
+Requires: python3-pytest-cov
+Requires: python3-sphinx
+Requires: python3-sphinx-autodoc-typehints
+Requires: python3-torchvision
+Requires: python3-nbconvert
+Requires: python3-jupyter-client
+Requires: python3-yappi
+Requires: python3-SQLAlchemy
+Requires: python3-jupyter
+Requires: python3-beautifulsoup4
+Requires: python3-black
+Requires: python3-flake8
+Requires: python3-hypothesis
+Requires: python3-Jinja2
+Requires: python3-pyfakefs
+Requires: python3-pytest
+Requires: python3-pytest-cov
+Requires: python3-sphinx
+Requires: python3-sphinx-autodoc-typehints
+Requires: python3-torchvision
+Requires: python3-nbconvert
+Requires: python3-jupyter-client
+Requires: python3-yappi
+Requires: python3-SQLAlchemy
+Requires: python3-jupyter
+Requires: python3-tensorboard
+Requires: python3-torchvision
+Requires: python3-torchx
+Requires: python3-psycopg2
+Requires: python3-ray
+Requires: python3-tabulate
+Requires: python3-tensorboardX
+Requires: python3-matplotlib
+Requires: python3-pyro-ppl
+Requires: python3-pytorch-lightning
+Requires: python3-beautifulsoup4
+Requires: python3-black
+Requires: python3-flake8
+Requires: python3-hypothesis
+Requires: python3-Jinja2
+Requires: python3-pyfakefs
+Requires: python3-pytest
+Requires: python3-pytest-cov
+Requires: python3-sphinx
+Requires: python3-sphinx-autodoc-typehints
+Requires: python3-torchvision
+Requires: python3-nbconvert
+Requires: python3-jupyter-client
+Requires: python3-yappi
+Requires: python3-SQLAlchemy
+Requires: python3-jupyter
+Requires: python3-tensorboard
+Requires: python3-torchvision
+Requires: python3-torchx
+Requires: python3-tensorboard
+Requires: python3-torchvision
+Requires: python3-torchx
+
+%description
+<img width="300" src="https://ax.dev/img/ax_logo_lockup.svg" alt="Ax Logo" />
+
+<hr/>
+
+[![Support Ukraine](https://img.shields.io/badge/Support-Ukraine-FFD500?style=flat&labelColor=005BBB)](https://opensource.fb.com/support-ukraine)
+[![Build Status](https://img.shields.io/pypi/v/ax-platform.svg)](https://pypi.org/project/ax-platform/)
+[![Build Status](https://img.shields.io/pypi/pyversions/ax-platform.svg)](https://pypi.org/project/ax-platform/)
+[![Build Status](https://img.shields.io/pypi/wheel/ax-platform.svg)](https://pypi.org/project/ax-platform/)
+[![Build Status](https://github.com/facebook/Ax/workflows/Build%20and%20Test%20Workflow/badge.svg)](https://github.com/facebook/Ax/actions?query=workflow%3A%22Build+and+Test+Workflow%22)
+[![codecov](https://codecov.io/gh/facebook/Ax/branch/main/graph/badge.svg)](https://codecov.io/gh/facebook/Ax)
+[![Build Status](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)
+
+Ax is an accessible, general-purpose platform for understanding, managing,
+deploying, and automating adaptive experiments.
+
+Adaptive experimentation is the machine-learning guided process of iteratively
+exploring a (possibly infinite) parameter space in order to identify optimal
+configurations in a resource-efficient manner. Ax currently supports Bayesian
+optimization and bandit optimization as exploration strategies. Bayesian
+optimization in Ax is powered by [BoTorch](https://github.com/facebookexternal/botorch),
+a modern library for Bayesian optimization research built on PyTorch.
+
+For full documentation and tutorials, see the [Ax website](https://ax.dev)
+
+## Why Ax?
+
+* **Versatility**: Ax supports different kinds of experiments, from dynamic ML-assisted A/B testing, to hyperparameter optimization in machine learning.
+* **Customization**: Ax makes it easy to add new modeling and decision algorithms, enabling research and development with minimal overhead.
+* **Production-completeness**: Ax comes with storage integration and ability to fully save and reload experiments.
+* **Support for multi-modal and constrained experimentation**: Ax allows for running and combining multiple experiments (e.g. simulation with a real-world "online" A/B test) and for constrained optimization (e.g. improving classification accuracy without significant increase in resource-utilization).
+* **Efficiency in high-noise setting**: Ax offers state-of-the-art algorithms specifically geared to noisy experiments, such as simulations with reinforcement-learning agents.
+* **Ease of use**: Ax includes 3 different APIs that strike different balances between lightweight structure and flexibility. Using the most concise Loop API, a whole optimization can be done in just one function call. The Service API integrates easily with external schedulers. The most elaborate Developer API affords full algorithm customization and experiment introspection.
+
+## Getting Started
+
+To run a simple optimization loop in Ax (using the
+[Booth response surface](https://www.sfu.ca/~ssurjano/booth.html) as the
+artificial evaluation function):
+
+```python
+>>> from ax import optimize
+>>> best_parameters, best_values, experiment, model = optimize(
+ parameters=[
+ {
+ "name": "x1",
+ "type": "range",
+ "bounds": [-10.0, 10.0],
+ },
+ {
+ "name": "x2",
+ "type": "range",
+ "bounds": [-10.0, 10.0],
+ },
+ ],
+ # Booth function
+ evaluation_function=lambda p: (p["x1"] + 2*p["x2"] - 7)**2 + (2*p["x1"] + p["x2"] - 5)**2,
+ minimize=True,
+ )
+
+# best_parameters contains {'x1': 1.02, 'x2': 2.97}; the global min is (1, 3)
+```
+
+## Installation
+
+### Requirements
+You need Python 3.8 or later to run Ax.
+
+The required Python dependencies are:
+
+* [botorch](https://www.botorch.org)
+* jinja2
+* pandas
+* scipy
+* sklearn
+* plotly >=2.2.1
+
+### Stable Version
+
+#### Installing via pip
+We recommend installing Ax via pip (even if using Conda environment):
+
+```
+conda install pytorch torchvision -c pytorch # OSX only (details below)
+pip install ax-platform
+```
+
+Installation will use Python wheels from PyPI, available for [OSX, Linux, and Windows](https://pypi.org/project/ax-platform/#files).
+
+*Note*: Make sure the `pip` being used to install `ax-platform` is actually the one from the newly created Conda environment.
+If you're using a Unix-based OS, you can use `which pip` to check.
+
+*Recommendation for MacOS users*: PyTorch is a required dependency of BoTorch, and can be automatically installed via pip.
+However, **we recommend you [install PyTorch manually](https://pytorch.org/get-started/locally/#anaconda-1) before installing Ax, using the Anaconda package manager**.
+Installing from Anaconda will link against MKL (a library that optimizes mathematical computation for Intel processors).
+This will result in up to an order-of-magnitude speed-up for Bayesian optimization, as at the moment, installing PyTorch from pip does not link against MKL.
+
+If you need CUDA on MacOS, you will need to build PyTorch from source. Please consult the PyTorch installation instructions above.
+
+#### Optional Dependencies
+
+To use Ax with a notebook environment, you will need Jupyter. Install it first:
+```
+pip install jupyter
+```
+
+If you want to store the experiments in MySQL, you will need SQLAlchemy:
+```
+pip install SQLAlchemy
+```
+
+### Latest Version
+
+#### Installing from Git
+
+You can install the latest (bleeding edge) version from Git.
+
+First, see recommendation for installing PyTorch for MacOS users above.
+
+At times, the bleeding edge for Ax can depend on bleeding edge versions of BoTorch (or GPyTorch). We therefore recommend installing those from Git as well:
+
+```
+pip install git+https://github.com/cornellius-gp/linear_operator.git
+pip install git+https://github.com/cornellius-gp/gpytorch.git
+export ALLOW_LATEST_GPYTORCH_LINOP=true
+pip install git+https://github.com/pytorch/botorch.git
+export ALLOW_BOTORCH_LATEST=true
+pip install git+https://github.com/facebook/Ax.git#egg=ax-platform
+```
+
+#### Optional Dependencies
+
+If using Ax in Jupyter notebooks:
+
+```
+pip install git+https://github.com/facebook/Ax.git#egg=ax-platform[notebook]
+```
+
+To support plotly-based plotting in newer Jupyter notebook versions
+
+```
+pip install "notebook>=5.3" "ipywidgets==7.5"
+```
+
+[See Plotly repo's README](https://github.com/plotly/plotly.py#jupyter-notebook-support) for details and JupyterLab instructions.
+
+If storing Ax experiments via SQLAlchemy in MySQL or SQLite:
+```
+pip install git+https://github.com/facebook/Ax.git#egg=ax-platform[mysql]
+```
+
+## Join the Ax Community
+
+### Getting help
+
+Please open an issue on our [issues page](https://github.com/facebook/Ax/issues) with any questions, feature requests or bug reports! If posting a bug report, please include a minimal reproducible example (as a code snippet) that we can use to reproduce and debug the problem you encountered.
+
+### Contributing
+
+See the [CONTRIBUTING](CONTRIBUTING.md) file for how to help out.
+
+When contributing to Ax, we recommend cloning the [repository](https://github.com/facebook/Ax) and installing all optional dependencies:
+
+```
+pip install git+https://github.com/cornellius-gp/linear_operator.git
+pip install git+https://github.com/cornellius-gp/gpytorch.git
+export ALLOW_LATEST_GPYTORCH_LINOP=true
+pip install git+https://github.com/pytorch/botorch.git
+export ALLOW_BOTORCH_LATEST=true
+git clone https://github.com/facebook/ax.git --depth 1
+cd ax
+pip install -e .[notebook,mysql,dev]
+```
+
+See recommendation for installing PyTorch for MacOS users above.
+
+The above example limits the cloned directory size via the
+[`--depth`](https://git-scm.com/docs/git-clone#Documentation/git-clone.txt---depthltdepthgt)
+argument to `git clone`. If you require the entire commit history you may remove this
+argument.
+
+## License
+
+Ax is licensed under the [MIT license](./LICENSE).
+
+
+
+
+%package -n python3-ax-platform
+Summary: Adaptive Experimentation
+Provides: python-ax-platform
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-ax-platform
+<img width="300" src="https://ax.dev/img/ax_logo_lockup.svg" alt="Ax Logo" />
+
+<hr/>
+
+[![Support Ukraine](https://img.shields.io/badge/Support-Ukraine-FFD500?style=flat&labelColor=005BBB)](https://opensource.fb.com/support-ukraine)
+[![Build Status](https://img.shields.io/pypi/v/ax-platform.svg)](https://pypi.org/project/ax-platform/)
+[![Build Status](https://img.shields.io/pypi/pyversions/ax-platform.svg)](https://pypi.org/project/ax-platform/)
+[![Build Status](https://img.shields.io/pypi/wheel/ax-platform.svg)](https://pypi.org/project/ax-platform/)
+[![Build Status](https://github.com/facebook/Ax/workflows/Build%20and%20Test%20Workflow/badge.svg)](https://github.com/facebook/Ax/actions?query=workflow%3A%22Build+and+Test+Workflow%22)
+[![codecov](https://codecov.io/gh/facebook/Ax/branch/main/graph/badge.svg)](https://codecov.io/gh/facebook/Ax)
+[![Build Status](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)
+
+Ax is an accessible, general-purpose platform for understanding, managing,
+deploying, and automating adaptive experiments.
+
+Adaptive experimentation is the machine-learning guided process of iteratively
+exploring a (possibly infinite) parameter space in order to identify optimal
+configurations in a resource-efficient manner. Ax currently supports Bayesian
+optimization and bandit optimization as exploration strategies. Bayesian
+optimization in Ax is powered by [BoTorch](https://github.com/facebookexternal/botorch),
+a modern library for Bayesian optimization research built on PyTorch.
+
+For full documentation and tutorials, see the [Ax website](https://ax.dev)
+
+## Why Ax?
+
+* **Versatility**: Ax supports different kinds of experiments, from dynamic ML-assisted A/B testing, to hyperparameter optimization in machine learning.
+* **Customization**: Ax makes it easy to add new modeling and decision algorithms, enabling research and development with minimal overhead.
+* **Production-completeness**: Ax comes with storage integration and ability to fully save and reload experiments.
+* **Support for multi-modal and constrained experimentation**: Ax allows for running and combining multiple experiments (e.g. simulation with a real-world "online" A/B test) and for constrained optimization (e.g. improving classification accuracy without significant increase in resource-utilization).
+* **Efficiency in high-noise setting**: Ax offers state-of-the-art algorithms specifically geared to noisy experiments, such as simulations with reinforcement-learning agents.
+* **Ease of use**: Ax includes 3 different APIs that strike different balances between lightweight structure and flexibility. Using the most concise Loop API, a whole optimization can be done in just one function call. The Service API integrates easily with external schedulers. The most elaborate Developer API affords full algorithm customization and experiment introspection.
+
+## Getting Started
+
+To run a simple optimization loop in Ax (using the
+[Booth response surface](https://www.sfu.ca/~ssurjano/booth.html) as the
+artificial evaluation function):
+
+```python
+>>> from ax import optimize
+>>> best_parameters, best_values, experiment, model = optimize(
+ parameters=[
+ {
+ "name": "x1",
+ "type": "range",
+ "bounds": [-10.0, 10.0],
+ },
+ {
+ "name": "x2",
+ "type": "range",
+ "bounds": [-10.0, 10.0],
+ },
+ ],
+ # Booth function
+ evaluation_function=lambda p: (p["x1"] + 2*p["x2"] - 7)**2 + (2*p["x1"] + p["x2"] - 5)**2,
+ minimize=True,
+ )
+
+# best_parameters contains {'x1': 1.02, 'x2': 2.97}; the global min is (1, 3)
+```
+
+## Installation
+
+### Requirements
+You need Python 3.8 or later to run Ax.
+
+The required Python dependencies are:
+
+* [botorch](https://www.botorch.org)
+* jinja2
+* pandas
+* scipy
+* sklearn
+* plotly >=2.2.1
+
+### Stable Version
+
+#### Installing via pip
+We recommend installing Ax via pip (even if using Conda environment):
+
+```
+conda install pytorch torchvision -c pytorch # OSX only (details below)
+pip install ax-platform
+```
+
+Installation will use Python wheels from PyPI, available for [OSX, Linux, and Windows](https://pypi.org/project/ax-platform/#files).
+
+*Note*: Make sure the `pip` being used to install `ax-platform` is actually the one from the newly created Conda environment.
+If you're using a Unix-based OS, you can use `which pip` to check.
+
+*Recommendation for MacOS users*: PyTorch is a required dependency of BoTorch, and can be automatically installed via pip.
+However, **we recommend you [install PyTorch manually](https://pytorch.org/get-started/locally/#anaconda-1) before installing Ax, using the Anaconda package manager**.
+Installing from Anaconda will link against MKL (a library that optimizes mathematical computation for Intel processors).
+This will result in up to an order-of-magnitude speed-up for Bayesian optimization, as at the moment, installing PyTorch from pip does not link against MKL.
+
+If you need CUDA on MacOS, you will need to build PyTorch from source. Please consult the PyTorch installation instructions above.
+
+#### Optional Dependencies
+
+To use Ax with a notebook environment, you will need Jupyter. Install it first:
+```
+pip install jupyter
+```
+
+If you want to store the experiments in MySQL, you will need SQLAlchemy:
+```
+pip install SQLAlchemy
+```
+
+### Latest Version
+
+#### Installing from Git
+
+You can install the latest (bleeding edge) version from Git.
+
+First, see recommendation for installing PyTorch for MacOS users above.
+
+At times, the bleeding edge for Ax can depend on bleeding edge versions of BoTorch (or GPyTorch). We therefore recommend installing those from Git as well:
+
+```
+pip install git+https://github.com/cornellius-gp/linear_operator.git
+pip install git+https://github.com/cornellius-gp/gpytorch.git
+export ALLOW_LATEST_GPYTORCH_LINOP=true
+pip install git+https://github.com/pytorch/botorch.git
+export ALLOW_BOTORCH_LATEST=true
+pip install git+https://github.com/facebook/Ax.git#egg=ax-platform
+```
+
+#### Optional Dependencies
+
+If using Ax in Jupyter notebooks:
+
+```
+pip install git+https://github.com/facebook/Ax.git#egg=ax-platform[notebook]
+```
+
+To support plotly-based plotting in newer Jupyter notebook versions
+
+```
+pip install "notebook>=5.3" "ipywidgets==7.5"
+```
+
+[See Plotly repo's README](https://github.com/plotly/plotly.py#jupyter-notebook-support) for details and JupyterLab instructions.
+
+If storing Ax experiments via SQLAlchemy in MySQL or SQLite:
+```
+pip install git+https://github.com/facebook/Ax.git#egg=ax-platform[mysql]
+```
+
+## Join the Ax Community
+
+### Getting help
+
+Please open an issue on our [issues page](https://github.com/facebook/Ax/issues) with any questions, feature requests or bug reports! If posting a bug report, please include a minimal reproducible example (as a code snippet) that we can use to reproduce and debug the problem you encountered.
+
+### Contributing
+
+See the [CONTRIBUTING](CONTRIBUTING.md) file for how to help out.
+
+When contributing to Ax, we recommend cloning the [repository](https://github.com/facebook/Ax) and installing all optional dependencies:
+
+```
+pip install git+https://github.com/cornellius-gp/linear_operator.git
+pip install git+https://github.com/cornellius-gp/gpytorch.git
+export ALLOW_LATEST_GPYTORCH_LINOP=true
+pip install git+https://github.com/pytorch/botorch.git
+export ALLOW_BOTORCH_LATEST=true
+git clone https://github.com/facebook/ax.git --depth 1
+cd ax
+pip install -e .[notebook,mysql,dev]
+```
+
+See recommendation for installing PyTorch for MacOS users above.
+
+The above example limits the cloned directory size via the
+[`--depth`](https://git-scm.com/docs/git-clone#Documentation/git-clone.txt---depthltdepthgt)
+argument to `git clone`. If you require the entire commit history you may remove this
+argument.
+
+## License
+
+Ax is licensed under the [MIT license](./LICENSE).
+
+
+
+
+%package help
+Summary: Development documents and examples for ax-platform
+Provides: python3-ax-platform-doc
+%description help
+<img width="300" src="https://ax.dev/img/ax_logo_lockup.svg" alt="Ax Logo" />
+
+<hr/>
+
+[![Support Ukraine](https://img.shields.io/badge/Support-Ukraine-FFD500?style=flat&labelColor=005BBB)](https://opensource.fb.com/support-ukraine)
+[![Build Status](https://img.shields.io/pypi/v/ax-platform.svg)](https://pypi.org/project/ax-platform/)
+[![Build Status](https://img.shields.io/pypi/pyversions/ax-platform.svg)](https://pypi.org/project/ax-platform/)
+[![Build Status](https://img.shields.io/pypi/wheel/ax-platform.svg)](https://pypi.org/project/ax-platform/)
+[![Build Status](https://github.com/facebook/Ax/workflows/Build%20and%20Test%20Workflow/badge.svg)](https://github.com/facebook/Ax/actions?query=workflow%3A%22Build+and+Test+Workflow%22)
+[![codecov](https://codecov.io/gh/facebook/Ax/branch/main/graph/badge.svg)](https://codecov.io/gh/facebook/Ax)
+[![Build Status](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)
+
+Ax is an accessible, general-purpose platform for understanding, managing,
+deploying, and automating adaptive experiments.
+
+Adaptive experimentation is the machine-learning guided process of iteratively
+exploring a (possibly infinite) parameter space in order to identify optimal
+configurations in a resource-efficient manner. Ax currently supports Bayesian
+optimization and bandit optimization as exploration strategies. Bayesian
+optimization in Ax is powered by [BoTorch](https://github.com/facebookexternal/botorch),
+a modern library for Bayesian optimization research built on PyTorch.
+
+For full documentation and tutorials, see the [Ax website](https://ax.dev)
+
+## Why Ax?
+
+* **Versatility**: Ax supports different kinds of experiments, from dynamic ML-assisted A/B testing, to hyperparameter optimization in machine learning.
+* **Customization**: Ax makes it easy to add new modeling and decision algorithms, enabling research and development with minimal overhead.
+* **Production-completeness**: Ax comes with storage integration and ability to fully save and reload experiments.
+* **Support for multi-modal and constrained experimentation**: Ax allows for running and combining multiple experiments (e.g. simulation with a real-world "online" A/B test) and for constrained optimization (e.g. improving classification accuracy without significant increase in resource-utilization).
+* **Efficiency in high-noise setting**: Ax offers state-of-the-art algorithms specifically geared to noisy experiments, such as simulations with reinforcement-learning agents.
+* **Ease of use**: Ax includes 3 different APIs that strike different balances between lightweight structure and flexibility. Using the most concise Loop API, a whole optimization can be done in just one function call. The Service API integrates easily with external schedulers. The most elaborate Developer API affords full algorithm customization and experiment introspection.
+
+## Getting Started
+
+To run a simple optimization loop in Ax (using the
+[Booth response surface](https://www.sfu.ca/~ssurjano/booth.html) as the
+artificial evaluation function):
+
+```python
+>>> from ax import optimize
+>>> best_parameters, best_values, experiment, model = optimize(
+ parameters=[
+ {
+ "name": "x1",
+ "type": "range",
+ "bounds": [-10.0, 10.0],
+ },
+ {
+ "name": "x2",
+ "type": "range",
+ "bounds": [-10.0, 10.0],
+ },
+ ],
+ # Booth function
+ evaluation_function=lambda p: (p["x1"] + 2*p["x2"] - 7)**2 + (2*p["x1"] + p["x2"] - 5)**2,
+ minimize=True,
+ )
+
+# best_parameters contains {'x1': 1.02, 'x2': 2.97}; the global min is (1, 3)
+```
+
+## Installation
+
+### Requirements
+You need Python 3.8 or later to run Ax.
+
+The required Python dependencies are:
+
+* [botorch](https://www.botorch.org)
+* jinja2
+* pandas
+* scipy
+* sklearn
+* plotly >=2.2.1
+
+### Stable Version
+
+#### Installing via pip
+We recommend installing Ax via pip (even if using Conda environment):
+
+```
+conda install pytorch torchvision -c pytorch # OSX only (details below)
+pip install ax-platform
+```
+
+Installation will use Python wheels from PyPI, available for [OSX, Linux, and Windows](https://pypi.org/project/ax-platform/#files).
+
+*Note*: Make sure the `pip` being used to install `ax-platform` is actually the one from the newly created Conda environment.
+If you're using a Unix-based OS, you can use `which pip` to check.
+
+*Recommendation for MacOS users*: PyTorch is a required dependency of BoTorch, and can be automatically installed via pip.
+However, **we recommend you [install PyTorch manually](https://pytorch.org/get-started/locally/#anaconda-1) before installing Ax, using the Anaconda package manager**.
+Installing from Anaconda will link against MKL (a library that optimizes mathematical computation for Intel processors).
+This will result in up to an order-of-magnitude speed-up for Bayesian optimization, as at the moment, installing PyTorch from pip does not link against MKL.
+
+If you need CUDA on MacOS, you will need to build PyTorch from source. Please consult the PyTorch installation instructions above.
+
+#### Optional Dependencies
+
+To use Ax with a notebook environment, you will need Jupyter. Install it first:
+```
+pip install jupyter
+```
+
+If you want to store the experiments in MySQL, you will need SQLAlchemy:
+```
+pip install SQLAlchemy
+```
+
+### Latest Version
+
+#### Installing from Git
+
+You can install the latest (bleeding edge) version from Git.
+
+First, see recommendation for installing PyTorch for MacOS users above.
+
+At times, the bleeding edge for Ax can depend on bleeding edge versions of BoTorch (or GPyTorch). We therefore recommend installing those from Git as well:
+
+```
+pip install git+https://github.com/cornellius-gp/linear_operator.git
+pip install git+https://github.com/cornellius-gp/gpytorch.git
+export ALLOW_LATEST_GPYTORCH_LINOP=true
+pip install git+https://github.com/pytorch/botorch.git
+export ALLOW_BOTORCH_LATEST=true
+pip install git+https://github.com/facebook/Ax.git#egg=ax-platform
+```
+
+#### Optional Dependencies
+
+If using Ax in Jupyter notebooks:
+
+```
+pip install git+https://github.com/facebook/Ax.git#egg=ax-platform[notebook]
+```
+
+To support plotly-based plotting in newer Jupyter notebook versions
+
+```
+pip install "notebook>=5.3" "ipywidgets==7.5"
+```
+
+[See Plotly repo's README](https://github.com/plotly/plotly.py#jupyter-notebook-support) for details and JupyterLab instructions.
+
+If storing Ax experiments via SQLAlchemy in MySQL or SQLite:
+```
+pip install git+https://github.com/facebook/Ax.git#egg=ax-platform[mysql]
+```
+
+## Join the Ax Community
+
+### Getting help
+
+Please open an issue on our [issues page](https://github.com/facebook/Ax/issues) with any questions, feature requests or bug reports! If posting a bug report, please include a minimal reproducible example (as a code snippet) that we can use to reproduce and debug the problem you encountered.
+
+### Contributing
+
+See the [CONTRIBUTING](CONTRIBUTING.md) file for how to help out.
+
+When contributing to Ax, we recommend cloning the [repository](https://github.com/facebook/Ax) and installing all optional dependencies:
+
+```
+pip install git+https://github.com/cornellius-gp/linear_operator.git
+pip install git+https://github.com/cornellius-gp/gpytorch.git
+export ALLOW_LATEST_GPYTORCH_LINOP=true
+pip install git+https://github.com/pytorch/botorch.git
+export ALLOW_BOTORCH_LATEST=true
+git clone https://github.com/facebook/ax.git --depth 1
+cd ax
+pip install -e .[notebook,mysql,dev]
+```
+
+See recommendation for installing PyTorch for MacOS users above.
+
+The above example limits the cloned directory size via the
+[`--depth`](https://git-scm.com/docs/git-clone#Documentation/git-clone.txt---depthltdepthgt)
+argument to `git clone`. If you require the entire commit history you may remove this
+argument.
+
+## License
+
+Ax is licensed under the [MIT license](./LICENSE).
+
+
+
+
+%prep
+%autosetup -n ax-platform-0.3.1
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-ax-platform -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.1-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..6812cb9
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+5c77534503acbf05f1451c3c8c259fad ax-platform-0.3.1.tar.gz