1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
|
%global _empty_manifest_terminate_build 0
Name: python-ax-platform
Version: 0.3.1
Release: 1
Summary: Adaptive Experimentation
License: MIT
URL: https://github.com/facebook/Ax
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/ff/dd/dea40f9e710c1c588ff9cc804c8f12c8497d064149c29eca3f4e2983f236/ax-platform-0.3.1.tar.gz
BuildArch: noarch
Requires: python3-botorch
Requires: python3-jinja2
Requires: python3-pandas
Requires: python3-scipy
Requires: python3-scikit-learn
Requires: python3-ipywidgets
Requires: python3-plotly
Requires: python3-typeguard
Requires: python3-beautifulsoup4
Requires: python3-black
Requires: python3-flake8
Requires: python3-hypothesis
Requires: python3-Jinja2
Requires: python3-pyfakefs
Requires: python3-pytest
Requires: python3-pytest-cov
Requires: python3-sphinx
Requires: python3-sphinx-autodoc-typehints
Requires: python3-torchvision
Requires: python3-nbconvert
Requires: python3-jupyter-client
Requires: python3-yappi
Requires: python3-SQLAlchemy
Requires: python3-jupyter
Requires: python3-beautifulsoup4
Requires: python3-black
Requires: python3-flake8
Requires: python3-hypothesis
Requires: python3-Jinja2
Requires: python3-pyfakefs
Requires: python3-pytest
Requires: python3-pytest-cov
Requires: python3-sphinx
Requires: python3-sphinx-autodoc-typehints
Requires: python3-torchvision
Requires: python3-nbconvert
Requires: python3-jupyter-client
Requires: python3-yappi
Requires: python3-SQLAlchemy
Requires: python3-jupyter
Requires: python3-tensorboard
Requires: python3-torchvision
Requires: python3-torchx
Requires: python3-psycopg2
Requires: python3-ray
Requires: python3-tabulate
Requires: python3-tensorboardX
Requires: python3-matplotlib
Requires: python3-pyro-ppl
Requires: python3-pytorch-lightning
Requires: python3-beautifulsoup4
Requires: python3-black
Requires: python3-flake8
Requires: python3-hypothesis
Requires: python3-Jinja2
Requires: python3-pyfakefs
Requires: python3-pytest
Requires: python3-pytest-cov
Requires: python3-sphinx
Requires: python3-sphinx-autodoc-typehints
Requires: python3-torchvision
Requires: python3-nbconvert
Requires: python3-jupyter-client
Requires: python3-yappi
Requires: python3-SQLAlchemy
Requires: python3-jupyter
Requires: python3-tensorboard
Requires: python3-torchvision
Requires: python3-torchx
Requires: python3-tensorboard
Requires: python3-torchvision
Requires: python3-torchx
%description
<img width="300" src="https://ax.dev/img/ax_logo_lockup.svg" alt="Ax Logo" />
<hr/>
[](https://opensource.fb.com/support-ukraine)
[](https://pypi.org/project/ax-platform/)
[](https://pypi.org/project/ax-platform/)
[](https://pypi.org/project/ax-platform/)
[](https://github.com/facebook/Ax/actions?query=workflow%3A%22Build+and+Test+Workflow%22)
[](https://codecov.io/gh/facebook/Ax)
[](LICENSE)
Ax is an accessible, general-purpose platform for understanding, managing,
deploying, and automating adaptive experiments.
Adaptive experimentation is the machine-learning guided process of iteratively
exploring a (possibly infinite) parameter space in order to identify optimal
configurations in a resource-efficient manner. Ax currently supports Bayesian
optimization and bandit optimization as exploration strategies. Bayesian
optimization in Ax is powered by [BoTorch](https://github.com/facebookexternal/botorch),
a modern library for Bayesian optimization research built on PyTorch.
For full documentation and tutorials, see the [Ax website](https://ax.dev)
## Why Ax?
* **Versatility**: Ax supports different kinds of experiments, from dynamic ML-assisted A/B testing, to hyperparameter optimization in machine learning.
* **Customization**: Ax makes it easy to add new modeling and decision algorithms, enabling research and development with minimal overhead.
* **Production-completeness**: Ax comes with storage integration and ability to fully save and reload experiments.
* **Support for multi-modal and constrained experimentation**: Ax allows for running and combining multiple experiments (e.g. simulation with a real-world "online" A/B test) and for constrained optimization (e.g. improving classification accuracy without significant increase in resource-utilization).
* **Efficiency in high-noise setting**: Ax offers state-of-the-art algorithms specifically geared to noisy experiments, such as simulations with reinforcement-learning agents.
* **Ease of use**: Ax includes 3 different APIs that strike different balances between lightweight structure and flexibility. Using the most concise Loop API, a whole optimization can be done in just one function call. The Service API integrates easily with external schedulers. The most elaborate Developer API affords full algorithm customization and experiment introspection.
## Getting Started
To run a simple optimization loop in Ax (using the
[Booth response surface](https://www.sfu.ca/~ssurjano/booth.html) as the
artificial evaluation function):
```python
>>> from ax import optimize
>>> best_parameters, best_values, experiment, model = optimize(
parameters=[
{
"name": "x1",
"type": "range",
"bounds": [-10.0, 10.0],
},
{
"name": "x2",
"type": "range",
"bounds": [-10.0, 10.0],
},
],
# Booth function
evaluation_function=lambda p: (p["x1"] + 2*p["x2"] - 7)**2 + (2*p["x1"] + p["x2"] - 5)**2,
minimize=True,
)
# best_parameters contains {'x1': 1.02, 'x2': 2.97}; the global min is (1, 3)
```
## Installation
### Requirements
You need Python 3.8 or later to run Ax.
The required Python dependencies are:
* [botorch](https://www.botorch.org)
* jinja2
* pandas
* scipy
* sklearn
* plotly >=2.2.1
### Stable Version
#### Installing via pip
We recommend installing Ax via pip (even if using Conda environment):
```
conda install pytorch torchvision -c pytorch # OSX only (details below)
pip install ax-platform
```
Installation will use Python wheels from PyPI, available for [OSX, Linux, and Windows](https://pypi.org/project/ax-platform/#files).
*Note*: Make sure the `pip` being used to install `ax-platform` is actually the one from the newly created Conda environment.
If you're using a Unix-based OS, you can use `which pip` to check.
*Recommendation for MacOS users*: PyTorch is a required dependency of BoTorch, and can be automatically installed via pip.
However, **we recommend you [install PyTorch manually](https://pytorch.org/get-started/locally/#anaconda-1) before installing Ax, using the Anaconda package manager**.
Installing from Anaconda will link against MKL (a library that optimizes mathematical computation for Intel processors).
This will result in up to an order-of-magnitude speed-up for Bayesian optimization, as at the moment, installing PyTorch from pip does not link against MKL.
If you need CUDA on MacOS, you will need to build PyTorch from source. Please consult the PyTorch installation instructions above.
#### Optional Dependencies
To use Ax with a notebook environment, you will need Jupyter. Install it first:
```
pip install jupyter
```
If you want to store the experiments in MySQL, you will need SQLAlchemy:
```
pip install SQLAlchemy
```
### Latest Version
#### Installing from Git
You can install the latest (bleeding edge) version from Git.
First, see recommendation for installing PyTorch for MacOS users above.
At times, the bleeding edge for Ax can depend on bleeding edge versions of BoTorch (or GPyTorch). We therefore recommend installing those from Git as well:
```
pip install git+https://github.com/cornellius-gp/linear_operator.git
pip install git+https://github.com/cornellius-gp/gpytorch.git
export ALLOW_LATEST_GPYTORCH_LINOP=true
pip install git+https://github.com/pytorch/botorch.git
export ALLOW_BOTORCH_LATEST=true
pip install git+https://github.com/facebook/Ax.git#egg=ax-platform
```
#### Optional Dependencies
If using Ax in Jupyter notebooks:
```
pip install git+https://github.com/facebook/Ax.git#egg=ax-platform[notebook]
```
To support plotly-based plotting in newer Jupyter notebook versions
```
pip install "notebook>=5.3" "ipywidgets==7.5"
```
[See Plotly repo's README](https://github.com/plotly/plotly.py#jupyter-notebook-support) for details and JupyterLab instructions.
If storing Ax experiments via SQLAlchemy in MySQL or SQLite:
```
pip install git+https://github.com/facebook/Ax.git#egg=ax-platform[mysql]
```
## Join the Ax Community
### Getting help
Please open an issue on our [issues page](https://github.com/facebook/Ax/issues) with any questions, feature requests or bug reports! If posting a bug report, please include a minimal reproducible example (as a code snippet) that we can use to reproduce and debug the problem you encountered.
### Contributing
See the [CONTRIBUTING](CONTRIBUTING.md) file for how to help out.
When contributing to Ax, we recommend cloning the [repository](https://github.com/facebook/Ax) and installing all optional dependencies:
```
pip install git+https://github.com/cornellius-gp/linear_operator.git
pip install git+https://github.com/cornellius-gp/gpytorch.git
export ALLOW_LATEST_GPYTORCH_LINOP=true
pip install git+https://github.com/pytorch/botorch.git
export ALLOW_BOTORCH_LATEST=true
git clone https://github.com/facebook/ax.git --depth 1
cd ax
pip install -e .[notebook,mysql,dev]
```
See recommendation for installing PyTorch for MacOS users above.
The above example limits the cloned directory size via the
[`--depth`](https://git-scm.com/docs/git-clone#Documentation/git-clone.txt---depthltdepthgt)
argument to `git clone`. If you require the entire commit history you may remove this
argument.
## License
Ax is licensed under the [MIT license](./LICENSE).
%package -n python3-ax-platform
Summary: Adaptive Experimentation
Provides: python-ax-platform
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-ax-platform
<img width="300" src="https://ax.dev/img/ax_logo_lockup.svg" alt="Ax Logo" />
<hr/>
[](https://opensource.fb.com/support-ukraine)
[](https://pypi.org/project/ax-platform/)
[](https://pypi.org/project/ax-platform/)
[](https://pypi.org/project/ax-platform/)
[](https://github.com/facebook/Ax/actions?query=workflow%3A%22Build+and+Test+Workflow%22)
[](https://codecov.io/gh/facebook/Ax)
[](LICENSE)
Ax is an accessible, general-purpose platform for understanding, managing,
deploying, and automating adaptive experiments.
Adaptive experimentation is the machine-learning guided process of iteratively
exploring a (possibly infinite) parameter space in order to identify optimal
configurations in a resource-efficient manner. Ax currently supports Bayesian
optimization and bandit optimization as exploration strategies. Bayesian
optimization in Ax is powered by [BoTorch](https://github.com/facebookexternal/botorch),
a modern library for Bayesian optimization research built on PyTorch.
For full documentation and tutorials, see the [Ax website](https://ax.dev)
## Why Ax?
* **Versatility**: Ax supports different kinds of experiments, from dynamic ML-assisted A/B testing, to hyperparameter optimization in machine learning.
* **Customization**: Ax makes it easy to add new modeling and decision algorithms, enabling research and development with minimal overhead.
* **Production-completeness**: Ax comes with storage integration and ability to fully save and reload experiments.
* **Support for multi-modal and constrained experimentation**: Ax allows for running and combining multiple experiments (e.g. simulation with a real-world "online" A/B test) and for constrained optimization (e.g. improving classification accuracy without significant increase in resource-utilization).
* **Efficiency in high-noise setting**: Ax offers state-of-the-art algorithms specifically geared to noisy experiments, such as simulations with reinforcement-learning agents.
* **Ease of use**: Ax includes 3 different APIs that strike different balances between lightweight structure and flexibility. Using the most concise Loop API, a whole optimization can be done in just one function call. The Service API integrates easily with external schedulers. The most elaborate Developer API affords full algorithm customization and experiment introspection.
## Getting Started
To run a simple optimization loop in Ax (using the
[Booth response surface](https://www.sfu.ca/~ssurjano/booth.html) as the
artificial evaluation function):
```python
>>> from ax import optimize
>>> best_parameters, best_values, experiment, model = optimize(
parameters=[
{
"name": "x1",
"type": "range",
"bounds": [-10.0, 10.0],
},
{
"name": "x2",
"type": "range",
"bounds": [-10.0, 10.0],
},
],
# Booth function
evaluation_function=lambda p: (p["x1"] + 2*p["x2"] - 7)**2 + (2*p["x1"] + p["x2"] - 5)**2,
minimize=True,
)
# best_parameters contains {'x1': 1.02, 'x2': 2.97}; the global min is (1, 3)
```
## Installation
### Requirements
You need Python 3.8 or later to run Ax.
The required Python dependencies are:
* [botorch](https://www.botorch.org)
* jinja2
* pandas
* scipy
* sklearn
* plotly >=2.2.1
### Stable Version
#### Installing via pip
We recommend installing Ax via pip (even if using Conda environment):
```
conda install pytorch torchvision -c pytorch # OSX only (details below)
pip install ax-platform
```
Installation will use Python wheels from PyPI, available for [OSX, Linux, and Windows](https://pypi.org/project/ax-platform/#files).
*Note*: Make sure the `pip` being used to install `ax-platform` is actually the one from the newly created Conda environment.
If you're using a Unix-based OS, you can use `which pip` to check.
*Recommendation for MacOS users*: PyTorch is a required dependency of BoTorch, and can be automatically installed via pip.
However, **we recommend you [install PyTorch manually](https://pytorch.org/get-started/locally/#anaconda-1) before installing Ax, using the Anaconda package manager**.
Installing from Anaconda will link against MKL (a library that optimizes mathematical computation for Intel processors).
This will result in up to an order-of-magnitude speed-up for Bayesian optimization, as at the moment, installing PyTorch from pip does not link against MKL.
If you need CUDA on MacOS, you will need to build PyTorch from source. Please consult the PyTorch installation instructions above.
#### Optional Dependencies
To use Ax with a notebook environment, you will need Jupyter. Install it first:
```
pip install jupyter
```
If you want to store the experiments in MySQL, you will need SQLAlchemy:
```
pip install SQLAlchemy
```
### Latest Version
#### Installing from Git
You can install the latest (bleeding edge) version from Git.
First, see recommendation for installing PyTorch for MacOS users above.
At times, the bleeding edge for Ax can depend on bleeding edge versions of BoTorch (or GPyTorch). We therefore recommend installing those from Git as well:
```
pip install git+https://github.com/cornellius-gp/linear_operator.git
pip install git+https://github.com/cornellius-gp/gpytorch.git
export ALLOW_LATEST_GPYTORCH_LINOP=true
pip install git+https://github.com/pytorch/botorch.git
export ALLOW_BOTORCH_LATEST=true
pip install git+https://github.com/facebook/Ax.git#egg=ax-platform
```
#### Optional Dependencies
If using Ax in Jupyter notebooks:
```
pip install git+https://github.com/facebook/Ax.git#egg=ax-platform[notebook]
```
To support plotly-based plotting in newer Jupyter notebook versions
```
pip install "notebook>=5.3" "ipywidgets==7.5"
```
[See Plotly repo's README](https://github.com/plotly/plotly.py#jupyter-notebook-support) for details and JupyterLab instructions.
If storing Ax experiments via SQLAlchemy in MySQL or SQLite:
```
pip install git+https://github.com/facebook/Ax.git#egg=ax-platform[mysql]
```
## Join the Ax Community
### Getting help
Please open an issue on our [issues page](https://github.com/facebook/Ax/issues) with any questions, feature requests or bug reports! If posting a bug report, please include a minimal reproducible example (as a code snippet) that we can use to reproduce and debug the problem you encountered.
### Contributing
See the [CONTRIBUTING](CONTRIBUTING.md) file for how to help out.
When contributing to Ax, we recommend cloning the [repository](https://github.com/facebook/Ax) and installing all optional dependencies:
```
pip install git+https://github.com/cornellius-gp/linear_operator.git
pip install git+https://github.com/cornellius-gp/gpytorch.git
export ALLOW_LATEST_GPYTORCH_LINOP=true
pip install git+https://github.com/pytorch/botorch.git
export ALLOW_BOTORCH_LATEST=true
git clone https://github.com/facebook/ax.git --depth 1
cd ax
pip install -e .[notebook,mysql,dev]
```
See recommendation for installing PyTorch for MacOS users above.
The above example limits the cloned directory size via the
[`--depth`](https://git-scm.com/docs/git-clone#Documentation/git-clone.txt---depthltdepthgt)
argument to `git clone`. If you require the entire commit history you may remove this
argument.
## License
Ax is licensed under the [MIT license](./LICENSE).
%package help
Summary: Development documents and examples for ax-platform
Provides: python3-ax-platform-doc
%description help
<img width="300" src="https://ax.dev/img/ax_logo_lockup.svg" alt="Ax Logo" />
<hr/>
[](https://opensource.fb.com/support-ukraine)
[](https://pypi.org/project/ax-platform/)
[](https://pypi.org/project/ax-platform/)
[](https://pypi.org/project/ax-platform/)
[](https://github.com/facebook/Ax/actions?query=workflow%3A%22Build+and+Test+Workflow%22)
[](https://codecov.io/gh/facebook/Ax)
[](LICENSE)
Ax is an accessible, general-purpose platform for understanding, managing,
deploying, and automating adaptive experiments.
Adaptive experimentation is the machine-learning guided process of iteratively
exploring a (possibly infinite) parameter space in order to identify optimal
configurations in a resource-efficient manner. Ax currently supports Bayesian
optimization and bandit optimization as exploration strategies. Bayesian
optimization in Ax is powered by [BoTorch](https://github.com/facebookexternal/botorch),
a modern library for Bayesian optimization research built on PyTorch.
For full documentation and tutorials, see the [Ax website](https://ax.dev)
## Why Ax?
* **Versatility**: Ax supports different kinds of experiments, from dynamic ML-assisted A/B testing, to hyperparameter optimization in machine learning.
* **Customization**: Ax makes it easy to add new modeling and decision algorithms, enabling research and development with minimal overhead.
* **Production-completeness**: Ax comes with storage integration and ability to fully save and reload experiments.
* **Support for multi-modal and constrained experimentation**: Ax allows for running and combining multiple experiments (e.g. simulation with a real-world "online" A/B test) and for constrained optimization (e.g. improving classification accuracy without significant increase in resource-utilization).
* **Efficiency in high-noise setting**: Ax offers state-of-the-art algorithms specifically geared to noisy experiments, such as simulations with reinforcement-learning agents.
* **Ease of use**: Ax includes 3 different APIs that strike different balances between lightweight structure and flexibility. Using the most concise Loop API, a whole optimization can be done in just one function call. The Service API integrates easily with external schedulers. The most elaborate Developer API affords full algorithm customization and experiment introspection.
## Getting Started
To run a simple optimization loop in Ax (using the
[Booth response surface](https://www.sfu.ca/~ssurjano/booth.html) as the
artificial evaluation function):
```python
>>> from ax import optimize
>>> best_parameters, best_values, experiment, model = optimize(
parameters=[
{
"name": "x1",
"type": "range",
"bounds": [-10.0, 10.0],
},
{
"name": "x2",
"type": "range",
"bounds": [-10.0, 10.0],
},
],
# Booth function
evaluation_function=lambda p: (p["x1"] + 2*p["x2"] - 7)**2 + (2*p["x1"] + p["x2"] - 5)**2,
minimize=True,
)
# best_parameters contains {'x1': 1.02, 'x2': 2.97}; the global min is (1, 3)
```
## Installation
### Requirements
You need Python 3.8 or later to run Ax.
The required Python dependencies are:
* [botorch](https://www.botorch.org)
* jinja2
* pandas
* scipy
* sklearn
* plotly >=2.2.1
### Stable Version
#### Installing via pip
We recommend installing Ax via pip (even if using Conda environment):
```
conda install pytorch torchvision -c pytorch # OSX only (details below)
pip install ax-platform
```
Installation will use Python wheels from PyPI, available for [OSX, Linux, and Windows](https://pypi.org/project/ax-platform/#files).
*Note*: Make sure the `pip` being used to install `ax-platform` is actually the one from the newly created Conda environment.
If you're using a Unix-based OS, you can use `which pip` to check.
*Recommendation for MacOS users*: PyTorch is a required dependency of BoTorch, and can be automatically installed via pip.
However, **we recommend you [install PyTorch manually](https://pytorch.org/get-started/locally/#anaconda-1) before installing Ax, using the Anaconda package manager**.
Installing from Anaconda will link against MKL (a library that optimizes mathematical computation for Intel processors).
This will result in up to an order-of-magnitude speed-up for Bayesian optimization, as at the moment, installing PyTorch from pip does not link against MKL.
If you need CUDA on MacOS, you will need to build PyTorch from source. Please consult the PyTorch installation instructions above.
#### Optional Dependencies
To use Ax with a notebook environment, you will need Jupyter. Install it first:
```
pip install jupyter
```
If you want to store the experiments in MySQL, you will need SQLAlchemy:
```
pip install SQLAlchemy
```
### Latest Version
#### Installing from Git
You can install the latest (bleeding edge) version from Git.
First, see recommendation for installing PyTorch for MacOS users above.
At times, the bleeding edge for Ax can depend on bleeding edge versions of BoTorch (or GPyTorch). We therefore recommend installing those from Git as well:
```
pip install git+https://github.com/cornellius-gp/linear_operator.git
pip install git+https://github.com/cornellius-gp/gpytorch.git
export ALLOW_LATEST_GPYTORCH_LINOP=true
pip install git+https://github.com/pytorch/botorch.git
export ALLOW_BOTORCH_LATEST=true
pip install git+https://github.com/facebook/Ax.git#egg=ax-platform
```
#### Optional Dependencies
If using Ax in Jupyter notebooks:
```
pip install git+https://github.com/facebook/Ax.git#egg=ax-platform[notebook]
```
To support plotly-based plotting in newer Jupyter notebook versions
```
pip install "notebook>=5.3" "ipywidgets==7.5"
```
[See Plotly repo's README](https://github.com/plotly/plotly.py#jupyter-notebook-support) for details and JupyterLab instructions.
If storing Ax experiments via SQLAlchemy in MySQL or SQLite:
```
pip install git+https://github.com/facebook/Ax.git#egg=ax-platform[mysql]
```
## Join the Ax Community
### Getting help
Please open an issue on our [issues page](https://github.com/facebook/Ax/issues) with any questions, feature requests or bug reports! If posting a bug report, please include a minimal reproducible example (as a code snippet) that we can use to reproduce and debug the problem you encountered.
### Contributing
See the [CONTRIBUTING](CONTRIBUTING.md) file for how to help out.
When contributing to Ax, we recommend cloning the [repository](https://github.com/facebook/Ax) and installing all optional dependencies:
```
pip install git+https://github.com/cornellius-gp/linear_operator.git
pip install git+https://github.com/cornellius-gp/gpytorch.git
export ALLOW_LATEST_GPYTORCH_LINOP=true
pip install git+https://github.com/pytorch/botorch.git
export ALLOW_BOTORCH_LATEST=true
git clone https://github.com/facebook/ax.git --depth 1
cd ax
pip install -e .[notebook,mysql,dev]
```
See recommendation for installing PyTorch for MacOS users above.
The above example limits the cloned directory size via the
[`--depth`](https://git-scm.com/docs/git-clone#Documentation/git-clone.txt---depthltdepthgt)
argument to `git clone`. If you require the entire commit history you may remove this
argument.
## License
Ax is licensed under the [MIT license](./LICENSE).
%prep
%autosetup -n ax-platform-0.3.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-ax-platform -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.1-1
- Package Spec generated
|