1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
|
%global _empty_manifest_terminate_build 0
Name: python-bambi
Version: 0.11.0
Release: 1
Summary: BAyesian Model Building Interface in Python
License: MIT License Copyright (c) 2016 the developers of Bambi Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
URL: https://pypi.org/project/bambi/
Source0: https://mirrors.aliyun.com/pypi/web/packages/59/37/f53bdf1815aad8e6e9bd149116044aa7eed814554eca916e0da260f97a9c/bambi-0.11.0.tar.gz
BuildArch: noarch
Requires: python3-arviz
Requires: python3-formulae
Requires: python3-graphviz
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-pymc
Requires: python3-pytensor
Requires: python3-scipy
Requires: python3-black
Requires: python3-ipython
Requires: python3-nbsphinx
Requires: python3-pre-commit
Requires: python3-pydata-sphinx-theme
Requires: python3-pylint
Requires: python3-pytest-cov
Requires: python3-pytest
Requires: python3-seaborn
Requires: python3-sphinx
Requires: python3-blackjax
Requires: python3-jax
Requires: python3-jaxlib
Requires: python3-numpyro
%description
<img src="https://raw.githubusercontent.com/bambinos/bambi/main/docs/logos/RGB/Bambi_logo.png" width=200></img>
[](https://badge.fury.io/py/bambi)
[](https://github.com/bambinos/bambi/actions/workflows/test.yml)
[](https://codecov.io/gh/bambinos/bambi)
[](https://github.com/ambv/black)
BAyesian Model-Building Interface in Python
## Overview
Bambi is a high-level Bayesian model-building interface written in Python. It's built on top of the [PyMC](https://github.com/pymc-devs/pymc) probabilistic programming framework, and is designed to make it extremely easy to fit mixed-effects models common in social sciences settings using a Bayesian approach.
## Installation
Bambi requires a working Python interpreter (3.8+). We recommend installing Python and key numerical libraries using the [Anaconda Distribution](https://www.anaconda.com/products/individual#Downloads), which has one-click installers available on all major platforms.
Assuming a standard Python environment is installed on your machine (including pip), Bambi itself can be installed in one line using pip:
pip install bambi
Alternatively, if you want the bleeding edge version of the package you can install from GitHub:
pip install git+https://github.com/bambinos/bambi.git
### Dependencies
Bambi requires working versions of ArviZ, formulae, NumPy, pandas and PyMC. Dependencies are listed in `pyproject.toml` and should all be installed by the Bambi installer; no further action should be required.
## Example
In the following two examples we assume the following basic setup
```python
import bambi as bmb
import numpy as np
import pandas as pd
data = pd.DataFrame({
"y": np.random.normal(size=50),
"g": np.random.choice(["Yes", "No"], size=50),
"x1": np.random.normal(size=50),
"x2": np.random.normal(size=50)
})
```
### Linear regression
```python
model = bmb.Model("y ~ x1 + x2", data)
fitted = model.fit()
```
In the first line we create and build a Bambi `Model`. The second line tells the sampler to start
running and it returns an `InferenceData` object, which can be passed to several ArviZ functions
such as `az.summary()` to get a summary of the parameters distribution and sample diagnostics or
`az.plot_trace()` to visualize them.
### Logistic regression
Here we just add the `family` argument set to `"bernoulli"` to tell Bambi we are modelling a binary
response. By default, it uses a logit link. We can also use some syntax sugar to specify which event
we want to model. We just say `g['Yes']` and Bambi will understand we want to model the probability
of a `"Yes"` response. But this notation is not mandatory. If we use `"g ~ x1 + x2"`, Bambi will
pick one of the events to model and will inform us which one it picked.
```python
model = bmb.Model("g['Yes'] ~ x1 + x2", data, family="bernoulli")
fitted = model.fit()
```
## Documentation
The Bambi documentation can be found in the [official docs](https://bambinos.github.io/bambi/index.html)
## Citation
If you use Bambi and want to cite it please use
```
@article{Capretto2022,
title={Bambi: A Simple Interface for Fitting Bayesian Linear Models in Python},
volume={103},
url={https://www.jstatsoft.org/index.php/jss/article/view/v103i15},
doi={10.18637/jss.v103.i15},
number={15},
journal={Journal of Statistical Software},
author={Capretto, Tomás and Piho, Camen and Kumar, Ravin and Westfall, Jacob and Yarkoni, Tal and Martin, Osvaldo A},
year={2022},
pages={1–29}
}
```
## Contributions
Bambi is a community project and welcomes contributions. Additional information can be found in the [Contributing](https://github.com/bambinos/bambi/blob/main/docs/CONTRIBUTING.md) Readme.
For a list of contributors see the [GitHub contributor](https://github.com/bambinos/bambi/graphs/contributors) page
## Donations
If you want to support Bambi financially, you can [make a donation](https://numfocus.org/donate-to-pymc) to our sister project PyMC.
## Code of Conduct
Bambi wishes to maintain a positive community. Additional details can be found in the [Code of Conduct](https://github.com/bambinos/bambi/blob/main/docs/CODE_OF_CONDUCT.md)
## License
[MIT License](https://github.com/bambinos/bambi/blob/main/LICENSE)
%package -n python3-bambi
Summary: BAyesian Model Building Interface in Python
Provides: python-bambi
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-bambi
<img src="https://raw.githubusercontent.com/bambinos/bambi/main/docs/logos/RGB/Bambi_logo.png" width=200></img>
[](https://badge.fury.io/py/bambi)
[](https://github.com/bambinos/bambi/actions/workflows/test.yml)
[](https://codecov.io/gh/bambinos/bambi)
[](https://github.com/ambv/black)
BAyesian Model-Building Interface in Python
## Overview
Bambi is a high-level Bayesian model-building interface written in Python. It's built on top of the [PyMC](https://github.com/pymc-devs/pymc) probabilistic programming framework, and is designed to make it extremely easy to fit mixed-effects models common in social sciences settings using a Bayesian approach.
## Installation
Bambi requires a working Python interpreter (3.8+). We recommend installing Python and key numerical libraries using the [Anaconda Distribution](https://www.anaconda.com/products/individual#Downloads), which has one-click installers available on all major platforms.
Assuming a standard Python environment is installed on your machine (including pip), Bambi itself can be installed in one line using pip:
pip install bambi
Alternatively, if you want the bleeding edge version of the package you can install from GitHub:
pip install git+https://github.com/bambinos/bambi.git
### Dependencies
Bambi requires working versions of ArviZ, formulae, NumPy, pandas and PyMC. Dependencies are listed in `pyproject.toml` and should all be installed by the Bambi installer; no further action should be required.
## Example
In the following two examples we assume the following basic setup
```python
import bambi as bmb
import numpy as np
import pandas as pd
data = pd.DataFrame({
"y": np.random.normal(size=50),
"g": np.random.choice(["Yes", "No"], size=50),
"x1": np.random.normal(size=50),
"x2": np.random.normal(size=50)
})
```
### Linear regression
```python
model = bmb.Model("y ~ x1 + x2", data)
fitted = model.fit()
```
In the first line we create and build a Bambi `Model`. The second line tells the sampler to start
running and it returns an `InferenceData` object, which can be passed to several ArviZ functions
such as `az.summary()` to get a summary of the parameters distribution and sample diagnostics or
`az.plot_trace()` to visualize them.
### Logistic regression
Here we just add the `family` argument set to `"bernoulli"` to tell Bambi we are modelling a binary
response. By default, it uses a logit link. We can also use some syntax sugar to specify which event
we want to model. We just say `g['Yes']` and Bambi will understand we want to model the probability
of a `"Yes"` response. But this notation is not mandatory. If we use `"g ~ x1 + x2"`, Bambi will
pick one of the events to model and will inform us which one it picked.
```python
model = bmb.Model("g['Yes'] ~ x1 + x2", data, family="bernoulli")
fitted = model.fit()
```
## Documentation
The Bambi documentation can be found in the [official docs](https://bambinos.github.io/bambi/index.html)
## Citation
If you use Bambi and want to cite it please use
```
@article{Capretto2022,
title={Bambi: A Simple Interface for Fitting Bayesian Linear Models in Python},
volume={103},
url={https://www.jstatsoft.org/index.php/jss/article/view/v103i15},
doi={10.18637/jss.v103.i15},
number={15},
journal={Journal of Statistical Software},
author={Capretto, Tomás and Piho, Camen and Kumar, Ravin and Westfall, Jacob and Yarkoni, Tal and Martin, Osvaldo A},
year={2022},
pages={1–29}
}
```
## Contributions
Bambi is a community project and welcomes contributions. Additional information can be found in the [Contributing](https://github.com/bambinos/bambi/blob/main/docs/CONTRIBUTING.md) Readme.
For a list of contributors see the [GitHub contributor](https://github.com/bambinos/bambi/graphs/contributors) page
## Donations
If you want to support Bambi financially, you can [make a donation](https://numfocus.org/donate-to-pymc) to our sister project PyMC.
## Code of Conduct
Bambi wishes to maintain a positive community. Additional details can be found in the [Code of Conduct](https://github.com/bambinos/bambi/blob/main/docs/CODE_OF_CONDUCT.md)
## License
[MIT License](https://github.com/bambinos/bambi/blob/main/LICENSE)
%package help
Summary: Development documents and examples for bambi
Provides: python3-bambi-doc
%description help
<img src="https://raw.githubusercontent.com/bambinos/bambi/main/docs/logos/RGB/Bambi_logo.png" width=200></img>
[](https://badge.fury.io/py/bambi)
[](https://github.com/bambinos/bambi/actions/workflows/test.yml)
[](https://codecov.io/gh/bambinos/bambi)
[](https://github.com/ambv/black)
BAyesian Model-Building Interface in Python
## Overview
Bambi is a high-level Bayesian model-building interface written in Python. It's built on top of the [PyMC](https://github.com/pymc-devs/pymc) probabilistic programming framework, and is designed to make it extremely easy to fit mixed-effects models common in social sciences settings using a Bayesian approach.
## Installation
Bambi requires a working Python interpreter (3.8+). We recommend installing Python and key numerical libraries using the [Anaconda Distribution](https://www.anaconda.com/products/individual#Downloads), which has one-click installers available on all major platforms.
Assuming a standard Python environment is installed on your machine (including pip), Bambi itself can be installed in one line using pip:
pip install bambi
Alternatively, if you want the bleeding edge version of the package you can install from GitHub:
pip install git+https://github.com/bambinos/bambi.git
### Dependencies
Bambi requires working versions of ArviZ, formulae, NumPy, pandas and PyMC. Dependencies are listed in `pyproject.toml` and should all be installed by the Bambi installer; no further action should be required.
## Example
In the following two examples we assume the following basic setup
```python
import bambi as bmb
import numpy as np
import pandas as pd
data = pd.DataFrame({
"y": np.random.normal(size=50),
"g": np.random.choice(["Yes", "No"], size=50),
"x1": np.random.normal(size=50),
"x2": np.random.normal(size=50)
})
```
### Linear regression
```python
model = bmb.Model("y ~ x1 + x2", data)
fitted = model.fit()
```
In the first line we create and build a Bambi `Model`. The second line tells the sampler to start
running and it returns an `InferenceData` object, which can be passed to several ArviZ functions
such as `az.summary()` to get a summary of the parameters distribution and sample diagnostics or
`az.plot_trace()` to visualize them.
### Logistic regression
Here we just add the `family` argument set to `"bernoulli"` to tell Bambi we are modelling a binary
response. By default, it uses a logit link. We can also use some syntax sugar to specify which event
we want to model. We just say `g['Yes']` and Bambi will understand we want to model the probability
of a `"Yes"` response. But this notation is not mandatory. If we use `"g ~ x1 + x2"`, Bambi will
pick one of the events to model and will inform us which one it picked.
```python
model = bmb.Model("g['Yes'] ~ x1 + x2", data, family="bernoulli")
fitted = model.fit()
```
## Documentation
The Bambi documentation can be found in the [official docs](https://bambinos.github.io/bambi/index.html)
## Citation
If you use Bambi and want to cite it please use
```
@article{Capretto2022,
title={Bambi: A Simple Interface for Fitting Bayesian Linear Models in Python},
volume={103},
url={https://www.jstatsoft.org/index.php/jss/article/view/v103i15},
doi={10.18637/jss.v103.i15},
number={15},
journal={Journal of Statistical Software},
author={Capretto, Tomás and Piho, Camen and Kumar, Ravin and Westfall, Jacob and Yarkoni, Tal and Martin, Osvaldo A},
year={2022},
pages={1–29}
}
```
## Contributions
Bambi is a community project and welcomes contributions. Additional information can be found in the [Contributing](https://github.com/bambinos/bambi/blob/main/docs/CONTRIBUTING.md) Readme.
For a list of contributors see the [GitHub contributor](https://github.com/bambinos/bambi/graphs/contributors) page
## Donations
If you want to support Bambi financially, you can [make a donation](https://numfocus.org/donate-to-pymc) to our sister project PyMC.
## Code of Conduct
Bambi wishes to maintain a positive community. Additional details can be found in the [Code of Conduct](https://github.com/bambinos/bambi/blob/main/docs/CODE_OF_CONDUCT.md)
## License
[MIT License](https://github.com/bambinos/bambi/blob/main/LICENSE)
%prep
%autosetup -n bambi-0.11.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-bambi -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.11.0-1
- Package Spec generated
|