diff options
Diffstat (limited to 'python-banner-storedot.spec')
-rw-r--r-- | python-banner-storedot.spec | 471 |
1 files changed, 471 insertions, 0 deletions
diff --git a/python-banner-storedot.spec b/python-banner-storedot.spec new file mode 100644 index 0000000..4f509d6 --- /dev/null +++ b/python-banner-storedot.spec @@ -0,0 +1,471 @@ +%global _empty_manifest_terminate_build 0 +Name: python-banner-storedot +Version: 2.3.1 +Release: 1 +Summary: light dal package +License: MIT License +URL: https://https://github.com/storedot/banner +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/1e/d1/a1d53b6a74d2ebc3277fa5d5e708c01cc8d8f9020c99f60f66907e8e5895/banner-storedot-2.3.1.tar.gz +BuildArch: noarch + +Requires: python3-wheel +Requires: python3-mysqlclient +Requires: python3-redis +Requires: python3-pandas +Requires: python3-joblib +Requires: python3-psycopg2 + +%description +# banner.connection: + ## Connection(Object): + - ABS class + + ## RelationalConnection(Connection): + - ABS class + + ## Storage(Connection): + - ABS class + + ## PrintableConnection(Connection): + - ABS class + + ## MySqlConnection(RelationalConnection, PrintableConnection)(host, user, passwd, db, ssl_key, ssl_cert, name): + - Create Connection object compatible with banner.queries + - **raises MySQLError for bad connection** + + ## PostgresSqlConnection(RelationalConnection, PrintableConnection)(host, user, port=5432, passwd=None, db=None, ssl_key=None, ssl_cert=None, charset='utf8', name=None): + - Create Connection object compatible with banner.queries + - **raises MySQLError for bad connection** + + ## RedisConnection(Storage, PrintableConnection)(host, port, passwd, db, ssl_key, ssl_cert, name, ttl): + - Create CacheConnection object compatible with banner.queries + +# banner.queries.Queries: + ## CONNECTIONS(conns: Dict[str, Connection] = {}) -> : + - Getter/Setter for known(default) Connections dict + + ## CACHE(con: CacheConnection = None): + - Getter/Setter for known(default) CacheConnection + + ## simple_query(query: str, w2p_parse: bool = True, connection: Union[Connection, str] = None, cache: Storage = None, ttl: int = None) -> pd.DataFrame: + - run a simple string query for Connection + - connection=None try to get first known connection, **raise KeyError if None found** + - Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl) + - Cache=False will not cache the result even if Queries.CACHE is set + - w2p_parse=True - should parse query according to w2p syntax + + ## describe_table(table: str, connection: Union[RelationalConnection, str] = None) -> pd.DataFrame: + - Describes a table in connection + - Raises OperationalError and KeyError(Failed to find a connection for given key) + + ## describe(connection: Union[RelationalConnection, str] = None) -> pd.DataFrame: + - Describe Table names in connection + - Raises OperationalError and KeyError(Failed to find a connection for given key) + + ## table_query(table: str, columns: Union[list, str] = '*', condition: str = 'TRUE', connection=None, cache_connection=None, ttl=None, raw=False) -> pd.DataFrame: + - Queries a given connection for 'SELECT {columns} FROM {table} WHERE {condition}' + - Accepts both column values and labels + - raw=True - column names as in db + - Queries a given Connection(ip)/str of a known connection (or first known) return result as DataFrame + - Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl) + - Cache=False will not cache the result even if Queries.CACHE is set + - Raises OperationalError and KeyError(Failed to find a connection for given key) + + ## neware_cache_query(keys: Iterable, condition: str = 'TRUE', connection: Union[MySqlConnection, str] = None, cache: Storage = None, ttl: int = None) -> pd.DataFrame: + - simplified query to retrieve aggregate cache data by condition + - condition is a valid where clause for given connection type + - requires keys in the form Iterable(Tuple(ip, device, unit, channel, test)), ex: [(241, 240222, 6, 11, 2818575226)] + - Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl) + - Cache=False will not cache the result even if Queries.CACHE is set + + ## neware_query(device: int, unit: int, channel: int, test: int, connection: Union[Connection, str] = None, cache_connection=None, ttl=None, raw=False, dqdv=False, condition: str = '1', temperature: bool = True, cache_data: pd.DataFrame = pd.DataFrame()) -> pd.DataFrame: + - query Connection for device, unit, channel, test + - connection=None try to get first known connection, **raise KeyError if None found** + - temperature=True - fetch temperature data + - raw=False - compute temperature, voltage, current aswell as grouping by auxchl_id + - dqdv=True -> banner.neware.calc_dq_dv + - Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl) + - Cache=False will not cache the result even if Queries.CACHE is set + - **raises Type err if no data exists** + + ## neware_tests_query(table: str, experiments: Union[list, Number, str] = [], templates: Union[list, Number, str] = [], tests: Union[list, Number, str] = [], cells: Union[list,Number, str] = [], condition: str = 'cycle < 2', raw=False, dqdv=False, temperature: bool = True, connection: Union[Connection, str] = None, cache_connection=None, ttl=None): + - Multi Process Queries.neware_query (number of processes = number of distinct connections found for input) + - Queries all available tests for given table AND experiments AND templates AND tests AND cells + - Union[list, Number, str] - single/list of numbers or a valid query + - temperature=True - fetch temperature data + - raw=False - compute temperature, voltage, current aswell as grouping by auxchl_id + - dqdv=True -> banner.neware.calc_dq_dv + - Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl) + - Cache=False will not cache the result even if Queries.CACHE is set + - **raises Type err if no data exists** + +# banner.neware: + ## NEWARE_STEPS: + - Step number : Step Name Dictionary + + ## calculate_neware_columns(data: pd.DataFrame): + - calculate neware columns for a valid neware DataFrame + + ## calculate_dq_dv(data: pd.DataFrame, raw=False): + - Calculate DQ/DV for a valid neware df + - raw=False: remove outliers + + ## merge_cache(data: pd.DataFrame, cache_data: pd.DataFrame): + - Given data(neware df), cache_data(neware_cache df), tries to merge cache_data into data + - ** Raises TypeError and Index Error** + +# banner.utils.web2py: + ## JOINS: + - Default Joins dictionary + - Used when calling DataFrame.join_table without specifing how to join + + ## COLUMN_TO_LABEL: + - Column : Label Dictionary + + ## LABEL_TO_COLUMN: + - Label : Column Dictionary + +# banner.pandas_decorator: + ## Added functionality onto Pandas.DataFrame object + + ## DataFrame.table_query + - banner.queries.Queries.table_query + + ## DataFrame.calculate_neware_columns + - banner.neware.calculate_neware_columns + + ## DataFrame.calculate_dq_dv + - banner.neware.calculate_dq_dv + + ## join_table(table: str, columns: Union[list, str] = '*', condition: str = 'TRUE', left: Union[str, list, None] = None, right: Union[str, list, None] = None, how: Union[str, None] = None, connection: Union[RelationalConnection, str] = None, raw: bool = False, cache: Storage=None, ttl: Union[bool, None] = None) -> pd.DataFrame: + - Given a table, Join its relevant Data with the current table_query DataFrame! + - table: any table under the available Connection + - columns: select specific columns from the table, default=All + - condition: additional filtering condition on merged data + - left: columns used to merge left DataFrame, default is picked from banner.utils.web2py.JOINS + - right: columns used to merge right DataFrame, default is picked from banner.utils.web2py.JOINS + - how: how to merge left and right, default is picked from banner.utils.web2py.JOINS + - connection=None try to get first known connection, **raise KeyError if None found** + - **raise TypeError If failed to join** + + +%package -n python3-banner-storedot +Summary: light dal package +Provides: python-banner-storedot +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-banner-storedot +# banner.connection: + ## Connection(Object): + - ABS class + + ## RelationalConnection(Connection): + - ABS class + + ## Storage(Connection): + - ABS class + + ## PrintableConnection(Connection): + - ABS class + + ## MySqlConnection(RelationalConnection, PrintableConnection)(host, user, passwd, db, ssl_key, ssl_cert, name): + - Create Connection object compatible with banner.queries + - **raises MySQLError for bad connection** + + ## PostgresSqlConnection(RelationalConnection, PrintableConnection)(host, user, port=5432, passwd=None, db=None, ssl_key=None, ssl_cert=None, charset='utf8', name=None): + - Create Connection object compatible with banner.queries + - **raises MySQLError for bad connection** + + ## RedisConnection(Storage, PrintableConnection)(host, port, passwd, db, ssl_key, ssl_cert, name, ttl): + - Create CacheConnection object compatible with banner.queries + +# banner.queries.Queries: + ## CONNECTIONS(conns: Dict[str, Connection] = {}) -> : + - Getter/Setter for known(default) Connections dict + + ## CACHE(con: CacheConnection = None): + - Getter/Setter for known(default) CacheConnection + + ## simple_query(query: str, w2p_parse: bool = True, connection: Union[Connection, str] = None, cache: Storage = None, ttl: int = None) -> pd.DataFrame: + - run a simple string query for Connection + - connection=None try to get first known connection, **raise KeyError if None found** + - Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl) + - Cache=False will not cache the result even if Queries.CACHE is set + - w2p_parse=True - should parse query according to w2p syntax + + ## describe_table(table: str, connection: Union[RelationalConnection, str] = None) -> pd.DataFrame: + - Describes a table in connection + - Raises OperationalError and KeyError(Failed to find a connection for given key) + + ## describe(connection: Union[RelationalConnection, str] = None) -> pd.DataFrame: + - Describe Table names in connection + - Raises OperationalError and KeyError(Failed to find a connection for given key) + + ## table_query(table: str, columns: Union[list, str] = '*', condition: str = 'TRUE', connection=None, cache_connection=None, ttl=None, raw=False) -> pd.DataFrame: + - Queries a given connection for 'SELECT {columns} FROM {table} WHERE {condition}' + - Accepts both column values and labels + - raw=True - column names as in db + - Queries a given Connection(ip)/str of a known connection (or first known) return result as DataFrame + - Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl) + - Cache=False will not cache the result even if Queries.CACHE is set + - Raises OperationalError and KeyError(Failed to find a connection for given key) + + ## neware_cache_query(keys: Iterable, condition: str = 'TRUE', connection: Union[MySqlConnection, str] = None, cache: Storage = None, ttl: int = None) -> pd.DataFrame: + - simplified query to retrieve aggregate cache data by condition + - condition is a valid where clause for given connection type + - requires keys in the form Iterable(Tuple(ip, device, unit, channel, test)), ex: [(241, 240222, 6, 11, 2818575226)] + - Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl) + - Cache=False will not cache the result even if Queries.CACHE is set + + ## neware_query(device: int, unit: int, channel: int, test: int, connection: Union[Connection, str] = None, cache_connection=None, ttl=None, raw=False, dqdv=False, condition: str = '1', temperature: bool = True, cache_data: pd.DataFrame = pd.DataFrame()) -> pd.DataFrame: + - query Connection for device, unit, channel, test + - connection=None try to get first known connection, **raise KeyError if None found** + - temperature=True - fetch temperature data + - raw=False - compute temperature, voltage, current aswell as grouping by auxchl_id + - dqdv=True -> banner.neware.calc_dq_dv + - Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl) + - Cache=False will not cache the result even if Queries.CACHE is set + - **raises Type err if no data exists** + + ## neware_tests_query(table: str, experiments: Union[list, Number, str] = [], templates: Union[list, Number, str] = [], tests: Union[list, Number, str] = [], cells: Union[list,Number, str] = [], condition: str = 'cycle < 2', raw=False, dqdv=False, temperature: bool = True, connection: Union[Connection, str] = None, cache_connection=None, ttl=None): + - Multi Process Queries.neware_query (number of processes = number of distinct connections found for input) + - Queries all available tests for given table AND experiments AND templates AND tests AND cells + - Union[list, Number, str] - single/list of numbers or a valid query + - temperature=True - fetch temperature data + - raw=False - compute temperature, voltage, current aswell as grouping by auxchl_id + - dqdv=True -> banner.neware.calc_dq_dv + - Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl) + - Cache=False will not cache the result even if Queries.CACHE is set + - **raises Type err if no data exists** + +# banner.neware: + ## NEWARE_STEPS: + - Step number : Step Name Dictionary + + ## calculate_neware_columns(data: pd.DataFrame): + - calculate neware columns for a valid neware DataFrame + + ## calculate_dq_dv(data: pd.DataFrame, raw=False): + - Calculate DQ/DV for a valid neware df + - raw=False: remove outliers + + ## merge_cache(data: pd.DataFrame, cache_data: pd.DataFrame): + - Given data(neware df), cache_data(neware_cache df), tries to merge cache_data into data + - ** Raises TypeError and Index Error** + +# banner.utils.web2py: + ## JOINS: + - Default Joins dictionary + - Used when calling DataFrame.join_table without specifing how to join + + ## COLUMN_TO_LABEL: + - Column : Label Dictionary + + ## LABEL_TO_COLUMN: + - Label : Column Dictionary + +# banner.pandas_decorator: + ## Added functionality onto Pandas.DataFrame object + + ## DataFrame.table_query + - banner.queries.Queries.table_query + + ## DataFrame.calculate_neware_columns + - banner.neware.calculate_neware_columns + + ## DataFrame.calculate_dq_dv + - banner.neware.calculate_dq_dv + + ## join_table(table: str, columns: Union[list, str] = '*', condition: str = 'TRUE', left: Union[str, list, None] = None, right: Union[str, list, None] = None, how: Union[str, None] = None, connection: Union[RelationalConnection, str] = None, raw: bool = False, cache: Storage=None, ttl: Union[bool, None] = None) -> pd.DataFrame: + - Given a table, Join its relevant Data with the current table_query DataFrame! + - table: any table under the available Connection + - columns: select specific columns from the table, default=All + - condition: additional filtering condition on merged data + - left: columns used to merge left DataFrame, default is picked from banner.utils.web2py.JOINS + - right: columns used to merge right DataFrame, default is picked from banner.utils.web2py.JOINS + - how: how to merge left and right, default is picked from banner.utils.web2py.JOINS + - connection=None try to get first known connection, **raise KeyError if None found** + - **raise TypeError If failed to join** + + +%package help +Summary: Development documents and examples for banner-storedot +Provides: python3-banner-storedot-doc +%description help +# banner.connection: + ## Connection(Object): + - ABS class + + ## RelationalConnection(Connection): + - ABS class + + ## Storage(Connection): + - ABS class + + ## PrintableConnection(Connection): + - ABS class + + ## MySqlConnection(RelationalConnection, PrintableConnection)(host, user, passwd, db, ssl_key, ssl_cert, name): + - Create Connection object compatible with banner.queries + - **raises MySQLError for bad connection** + + ## PostgresSqlConnection(RelationalConnection, PrintableConnection)(host, user, port=5432, passwd=None, db=None, ssl_key=None, ssl_cert=None, charset='utf8', name=None): + - Create Connection object compatible with banner.queries + - **raises MySQLError for bad connection** + + ## RedisConnection(Storage, PrintableConnection)(host, port, passwd, db, ssl_key, ssl_cert, name, ttl): + - Create CacheConnection object compatible with banner.queries + +# banner.queries.Queries: + ## CONNECTIONS(conns: Dict[str, Connection] = {}) -> : + - Getter/Setter for known(default) Connections dict + + ## CACHE(con: CacheConnection = None): + - Getter/Setter for known(default) CacheConnection + + ## simple_query(query: str, w2p_parse: bool = True, connection: Union[Connection, str] = None, cache: Storage = None, ttl: int = None) -> pd.DataFrame: + - run a simple string query for Connection + - connection=None try to get first known connection, **raise KeyError if None found** + - Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl) + - Cache=False will not cache the result even if Queries.CACHE is set + - w2p_parse=True - should parse query according to w2p syntax + + ## describe_table(table: str, connection: Union[RelationalConnection, str] = None) -> pd.DataFrame: + - Describes a table in connection + - Raises OperationalError and KeyError(Failed to find a connection for given key) + + ## describe(connection: Union[RelationalConnection, str] = None) -> pd.DataFrame: + - Describe Table names in connection + - Raises OperationalError and KeyError(Failed to find a connection for given key) + + ## table_query(table: str, columns: Union[list, str] = '*', condition: str = 'TRUE', connection=None, cache_connection=None, ttl=None, raw=False) -> pd.DataFrame: + - Queries a given connection for 'SELECT {columns} FROM {table} WHERE {condition}' + - Accepts both column values and labels + - raw=True - column names as in db + - Queries a given Connection(ip)/str of a known connection (or first known) return result as DataFrame + - Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl) + - Cache=False will not cache the result even if Queries.CACHE is set + - Raises OperationalError and KeyError(Failed to find a connection for given key) + + ## neware_cache_query(keys: Iterable, condition: str = 'TRUE', connection: Union[MySqlConnection, str] = None, cache: Storage = None, ttl: int = None) -> pd.DataFrame: + - simplified query to retrieve aggregate cache data by condition + - condition is a valid where clause for given connection type + - requires keys in the form Iterable(Tuple(ip, device, unit, channel, test)), ex: [(241, 240222, 6, 11, 2818575226)] + - Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl) + - Cache=False will not cache the result even if Queries.CACHE is set + + ## neware_query(device: int, unit: int, channel: int, test: int, connection: Union[Connection, str] = None, cache_connection=None, ttl=None, raw=False, dqdv=False, condition: str = '1', temperature: bool = True, cache_data: pd.DataFrame = pd.DataFrame()) -> pd.DataFrame: + - query Connection for device, unit, channel, test + - connection=None try to get first known connection, **raise KeyError if None found** + - temperature=True - fetch temperature data + - raw=False - compute temperature, voltage, current aswell as grouping by auxchl_id + - dqdv=True -> banner.neware.calc_dq_dv + - Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl) + - Cache=False will not cache the result even if Queries.CACHE is set + - **raises Type err if no data exists** + + ## neware_tests_query(table: str, experiments: Union[list, Number, str] = [], templates: Union[list, Number, str] = [], tests: Union[list, Number, str] = [], cells: Union[list,Number, str] = [], condition: str = 'cycle < 2', raw=False, dqdv=False, temperature: bool = True, connection: Union[Connection, str] = None, cache_connection=None, ttl=None): + - Multi Process Queries.neware_query (number of processes = number of distinct connections found for input) + - Queries all available tests for given table AND experiments AND templates AND tests AND cells + - Union[list, Number, str] - single/list of numbers or a valid query + - temperature=True - fetch temperature data + - raw=False - compute temperature, voltage, current aswell as grouping by auxchl_id + - dqdv=True -> banner.neware.calc_dq_dv + - Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl) + - Cache=False will not cache the result even if Queries.CACHE is set + - **raises Type err if no data exists** + +# banner.neware: + ## NEWARE_STEPS: + - Step number : Step Name Dictionary + + ## calculate_neware_columns(data: pd.DataFrame): + - calculate neware columns for a valid neware DataFrame + + ## calculate_dq_dv(data: pd.DataFrame, raw=False): + - Calculate DQ/DV for a valid neware df + - raw=False: remove outliers + + ## merge_cache(data: pd.DataFrame, cache_data: pd.DataFrame): + - Given data(neware df), cache_data(neware_cache df), tries to merge cache_data into data + - ** Raises TypeError and Index Error** + +# banner.utils.web2py: + ## JOINS: + - Default Joins dictionary + - Used when calling DataFrame.join_table without specifing how to join + + ## COLUMN_TO_LABEL: + - Column : Label Dictionary + + ## LABEL_TO_COLUMN: + - Label : Column Dictionary + +# banner.pandas_decorator: + ## Added functionality onto Pandas.DataFrame object + + ## DataFrame.table_query + - banner.queries.Queries.table_query + + ## DataFrame.calculate_neware_columns + - banner.neware.calculate_neware_columns + + ## DataFrame.calculate_dq_dv + - banner.neware.calculate_dq_dv + + ## join_table(table: str, columns: Union[list, str] = '*', condition: str = 'TRUE', left: Union[str, list, None] = None, right: Union[str, list, None] = None, how: Union[str, None] = None, connection: Union[RelationalConnection, str] = None, raw: bool = False, cache: Storage=None, ttl: Union[bool, None] = None) -> pd.DataFrame: + - Given a table, Join its relevant Data with the current table_query DataFrame! + - table: any table under the available Connection + - columns: select specific columns from the table, default=All + - condition: additional filtering condition on merged data + - left: columns used to merge left DataFrame, default is picked from banner.utils.web2py.JOINS + - right: columns used to merge right DataFrame, default is picked from banner.utils.web2py.JOINS + - how: how to merge left and right, default is picked from banner.utils.web2py.JOINS + - connection=None try to get first known connection, **raise KeyError if None found** + - **raise TypeError If failed to join** + + +%prep +%autosetup -n banner-storedot-2.3.1 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-banner-storedot -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 2.3.1-1 +- Package Spec generated |