1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
%global _empty_manifest_terminate_build 0
Name: python-bat
Version: 0.3.9
Release: 1
Summary: Zeek Analysis Tools
License: Apache
URL: https://github.com/SuperCowPowers/zat
Source0: https://mirrors.aliyun.com/pypi/web/packages/94/2b/f3f4b79048a4989f6432de4fc272578a796ce0927220c5ae5a4b71eb9479/bat-0.3.9.tar.gz
BuildArch: noarch
Requires: python3-requests
Requires: python3-watchdog
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-pandas
Requires: python3-scikit-learn
Requires: python3-pyspark
Requires: python3-pyarrow
Requires: python3-yara-python
Requires: python3-tldextract
%description
## Zeek Analysis Tools (ZAT) [](https://travis-ci.org/SuperCowPowers/zat) [](http://codecov.io/github/SuperCowPowers/zat?branch=master) [](https://pypi.python.org/pypi/zat) [](https://choosealicense.com/licenses/apache-2.0)
The ZAT Python package supports the processing and analysis of Zeek data
with Pandas, scikit-learn, and Spark
### Recent Improvements (Fall 2019):
- Renamed to **Zeek** Analysis Tools \:)
- Better Docs (<https://supercowpowers.github.io/zat/>)
- Faster/Smaller Pandas Dataframes for large log files: [Large Dataframes](https://supercowpowers.github.io/zat/large_dataframes.html)
- Better Panda Dataframe to Matrix (ndarray) support: [Dataframe To Matrix](https://supercowpowers.github.io/zat/dataframe_to_matrix.html)
- Scalable conversion from Zeek logs to Parquet: [Zeek to Parquet](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Parquet.ipynb)
- Vastly improved Spark Dataframe Class: [Zeek to Spark](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Spark.ipynb)
- Updated/improved Notebooks: [Analysis Notebooks](#analysis-notebooks)
### BroCon 2017 Presentation
Data Analysis, Machine Learning, Bro, and You!
([Video](https://www.youtube.com/watch?v=pG5lU9CLnIU))
### Why ZAT?
Zeek already has a flexible, powerful scripting language why should I use
ZAT?
**Offloading:** Running complex tasks like statistics, state machines,
machine learning, etc.. should be offloaded from Zeek so that Zeek can
focus on the efficient processing of high volume network traffic.
**Data Analysis:** We have a large set of support classes that help
bridge from raw Zeek data to packages like Pandas, scikit-learn, and
Spark. We also have example notebooks that show step-by-step how to get
from here to there.
## Getting Started
- [Examples of Using ZAT](https://supercowpowers.github.io/zat/examples.html)
### Analysis Notebooks
- [Zeek to Scikit-Learn](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Scikit_Learn.ipynb)
- [Zeek to Parquet](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Parquet.ipynb)
- [Zeek to Spark](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Spark.ipynb)
- [Spark Clustering](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Spark_Clustering.ipynb)
- [Zeek to Kafka](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Kafka.ipynb)
- [Zeek to Kafka to Spark](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Kafka_to_Spark.ipynb)
- [Clustering: Picking K (or not)](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Clustering_Picking_K.ipynb)
- [Anomaly Detection Exploration](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Anomaly_Detection.ipynb)
- [Risky Domains Stats and Deployment](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Risky_Domains.ipynb)
- [Zeek to Matplotlib](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Plot.ipynb)
<img align="right" style="padding:25px" src="notebooks/images/SCP_med.png" width="160">
### Install
$ pip install zat
### Documentation
<https://supercowpowers.github.io/zat/>
### About SuperCowPowers
The company was formed so that its developers could follow their passion for Python, streaming data pipelines and having fun with data analysis. We also think cows are cool and should be superheros or at least carry around rayguns and burner phones. <a href="https://www.supercowpowers.com" target="_blank">Visit SuperCowPowers</a>
%package -n python3-bat
Summary: Zeek Analysis Tools
Provides: python-bat
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-bat
## Zeek Analysis Tools (ZAT) [](https://travis-ci.org/SuperCowPowers/zat) [](http://codecov.io/github/SuperCowPowers/zat?branch=master) [](https://pypi.python.org/pypi/zat) [](https://choosealicense.com/licenses/apache-2.0)
The ZAT Python package supports the processing and analysis of Zeek data
with Pandas, scikit-learn, and Spark
### Recent Improvements (Fall 2019):
- Renamed to **Zeek** Analysis Tools \:)
- Better Docs (<https://supercowpowers.github.io/zat/>)
- Faster/Smaller Pandas Dataframes for large log files: [Large Dataframes](https://supercowpowers.github.io/zat/large_dataframes.html)
- Better Panda Dataframe to Matrix (ndarray) support: [Dataframe To Matrix](https://supercowpowers.github.io/zat/dataframe_to_matrix.html)
- Scalable conversion from Zeek logs to Parquet: [Zeek to Parquet](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Parquet.ipynb)
- Vastly improved Spark Dataframe Class: [Zeek to Spark](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Spark.ipynb)
- Updated/improved Notebooks: [Analysis Notebooks](#analysis-notebooks)
### BroCon 2017 Presentation
Data Analysis, Machine Learning, Bro, and You!
([Video](https://www.youtube.com/watch?v=pG5lU9CLnIU))
### Why ZAT?
Zeek already has a flexible, powerful scripting language why should I use
ZAT?
**Offloading:** Running complex tasks like statistics, state machines,
machine learning, etc.. should be offloaded from Zeek so that Zeek can
focus on the efficient processing of high volume network traffic.
**Data Analysis:** We have a large set of support classes that help
bridge from raw Zeek data to packages like Pandas, scikit-learn, and
Spark. We also have example notebooks that show step-by-step how to get
from here to there.
## Getting Started
- [Examples of Using ZAT](https://supercowpowers.github.io/zat/examples.html)
### Analysis Notebooks
- [Zeek to Scikit-Learn](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Scikit_Learn.ipynb)
- [Zeek to Parquet](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Parquet.ipynb)
- [Zeek to Spark](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Spark.ipynb)
- [Spark Clustering](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Spark_Clustering.ipynb)
- [Zeek to Kafka](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Kafka.ipynb)
- [Zeek to Kafka to Spark](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Kafka_to_Spark.ipynb)
- [Clustering: Picking K (or not)](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Clustering_Picking_K.ipynb)
- [Anomaly Detection Exploration](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Anomaly_Detection.ipynb)
- [Risky Domains Stats and Deployment](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Risky_Domains.ipynb)
- [Zeek to Matplotlib](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Plot.ipynb)
<img align="right" style="padding:25px" src="notebooks/images/SCP_med.png" width="160">
### Install
$ pip install zat
### Documentation
<https://supercowpowers.github.io/zat/>
### About SuperCowPowers
The company was formed so that its developers could follow their passion for Python, streaming data pipelines and having fun with data analysis. We also think cows are cool and should be superheros or at least carry around rayguns and burner phones. <a href="https://www.supercowpowers.com" target="_blank">Visit SuperCowPowers</a>
%package help
Summary: Development documents and examples for bat
Provides: python3-bat-doc
%description help
## Zeek Analysis Tools (ZAT) [](https://travis-ci.org/SuperCowPowers/zat) [](http://codecov.io/github/SuperCowPowers/zat?branch=master) [](https://pypi.python.org/pypi/zat) [](https://choosealicense.com/licenses/apache-2.0)
The ZAT Python package supports the processing and analysis of Zeek data
with Pandas, scikit-learn, and Spark
### Recent Improvements (Fall 2019):
- Renamed to **Zeek** Analysis Tools \:)
- Better Docs (<https://supercowpowers.github.io/zat/>)
- Faster/Smaller Pandas Dataframes for large log files: [Large Dataframes](https://supercowpowers.github.io/zat/large_dataframes.html)
- Better Panda Dataframe to Matrix (ndarray) support: [Dataframe To Matrix](https://supercowpowers.github.io/zat/dataframe_to_matrix.html)
- Scalable conversion from Zeek logs to Parquet: [Zeek to Parquet](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Parquet.ipynb)
- Vastly improved Spark Dataframe Class: [Zeek to Spark](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Spark.ipynb)
- Updated/improved Notebooks: [Analysis Notebooks](#analysis-notebooks)
### BroCon 2017 Presentation
Data Analysis, Machine Learning, Bro, and You!
([Video](https://www.youtube.com/watch?v=pG5lU9CLnIU))
### Why ZAT?
Zeek already has a flexible, powerful scripting language why should I use
ZAT?
**Offloading:** Running complex tasks like statistics, state machines,
machine learning, etc.. should be offloaded from Zeek so that Zeek can
focus on the efficient processing of high volume network traffic.
**Data Analysis:** We have a large set of support classes that help
bridge from raw Zeek data to packages like Pandas, scikit-learn, and
Spark. We also have example notebooks that show step-by-step how to get
from here to there.
## Getting Started
- [Examples of Using ZAT](https://supercowpowers.github.io/zat/examples.html)
### Analysis Notebooks
- [Zeek to Scikit-Learn](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Scikit_Learn.ipynb)
- [Zeek to Parquet](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Parquet.ipynb)
- [Zeek to Spark](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Spark.ipynb)
- [Spark Clustering](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Spark_Clustering.ipynb)
- [Zeek to Kafka](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Kafka.ipynb)
- [Zeek to Kafka to Spark](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Kafka_to_Spark.ipynb)
- [Clustering: Picking K (or not)](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Clustering_Picking_K.ipynb)
- [Anomaly Detection Exploration](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Anomaly_Detection.ipynb)
- [Risky Domains Stats and Deployment](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Risky_Domains.ipynb)
- [Zeek to Matplotlib](https://nbviewer.jupyter.org/github/SuperCowPowers/zat/blob/master/notebooks/Zeek_to_Plot.ipynb)
<img align="right" style="padding:25px" src="notebooks/images/SCP_med.png" width="160">
### Install
$ pip install zat
### Documentation
<https://supercowpowers.github.io/zat/>
### About SuperCowPowers
The company was formed so that its developers could follow their passion for Python, streaming data pipelines and having fun with data analysis. We also think cows are cool and should be superheros or at least carry around rayguns and burner phones. <a href="https://www.supercowpowers.com" target="_blank">Visit SuperCowPowers</a>
%prep
%autosetup -n bat-0.3.9
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-bat -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.9-1
- Package Spec generated
|