1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
|
%global _empty_manifest_terminate_build 0
Name: python-bcpandas
Version: 2.4.0
Release: 1
Summary: High-level wrapper around BCP for high performance data transfers between pandas and SQL Server. No knowledge of BCP required!!
License: MIT
URL: https://github.com/yehoshuadimarsky/bcpandas
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/e0/5c/a9fe97994ca3046384482aef7200b9c41f7b0fca3a3f623c375da50e9dec/bcpandas-2.4.0.tar.gz
BuildArch: noarch
Requires: python3-pandas
Requires: python3-pyodbc
Requires: python3-sqlalchemy
%description
# bcpandas
[](https://pypi.org/project/bcpandas/)
[](https://anaconda.org/conda-forge/bcpandas)
[](https://github.com/yehoshuadimarsky/bcpandas/blob/master/LICENSE)
[](https://github.com/yehoshuadimarsky/bcpandas/actions/workflows/CI.yml)
[](https://codecov.io/gh/yehoshuadimarsky/bcpandas)
[](https://github.com/psf/black)
[](https://pypi.python.org/pypi/bcpandas/)
[](https://github.com/Naereen/badges)
[](https://pepy.tech/project/bcpandas)
[](https://results.pre-commit.ci/latest/github/yehoshuadimarsky/bcpandas/master)
High-level wrapper around BCP for high performance data transfers between pandas and SQL Server. No
knowledge of BCP required!! (pronounced _BEE-CEE-Pandas_)
<!-- START doctoc generated TOC please keep comment here to allow auto update -->
<!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->
- [Quickstart](#quickstart)
- [IMPORTANT - Read vs. Write](#important---read-vs-write)
- [Benchmarks](#benchmarks)
- [to_sql](#to_sql)
- [Why not just use the new pandas `method='multi'`?](#why-not-just-use-the-new-pandas-methodmulti)
- [read_sql](#read_sql)
- [Requirements](#requirements)
- [Database](#database)
- [Python User](#python-user)
- [Installation](#installation)
- [Usage](#usage)
- [Credential/Connection object](#credentialconnection-object)
- [Recommended Usage](#recommended-usage)
- [Known Issues](#known-issues)
- [Background](#background)
- [Existing Solutions](#existing-solutions)
- [Design and Scope](#design-and-scope)
- [Testing](#testing)
- [Testing Requirements](#testing-requirements)
- [What Is Tested?](#what-is-tested)
- [Testing Implementation](#testing-implementation)
- [CI/CD](#cicd)
- [Contributing](#contributing)
- [GitHub Stars Trend](#github-stars-trend)
<!-- END doctoc generated TOC please keep comment here to allow auto update -->
## Quickstart
```python
In [1]: import pandas as pd
...: import numpy as np
...:
...: from bcpandas import SqlCreds, to_sql
In [2]: creds = SqlCreds(
...: 'my_server',
...: 'my_db',
...: 'my_username',
...: 'my_password'
...: )
In [3]: df = pd.DataFrame(
...: data=np.ndarray(shape=(10, 6), dtype=int),
...: columns=[f"col_{x}" for x in range(6)]
...: )
In [4]: df
Out[4]:
col_0 col_1 col_2 col_3 col_4 col_5
0 4128860 6029375 3801155 5570652 6619251 7536754
1 4849756 7536751 4456552 7143529 7471201 7012467
2 6029433 6881357 6881390 7274595 6553710 3342433
3 6619228 7733358 6029427 6488162 6357104 6553710
4 7536737 7077980 6422633 7536732 7602281 2949221
5 6357104 7012451 6750305 7536741 7340124 7274610
6 7340141 6226036 7274612 7077999 6881387 6029428
7 6619243 6226041 6881378 6553710 7209065 6029415
8 6881378 6553710 7209065 7536743 7274588 6619248
9 6226030 7209065 6619231 6881380 7274612 3014770
In [5]: to_sql(df, 'my_test_table', creds, index=False, if_exists='replace')
In [6]: df2 = pd.read_sql_table(table_name='my_test_table', con=creds.engine)
In [7]: df2
Out[7]:
col_0 col_1 col_2 col_3 col_4 col_5
0 4128860 6029375 3801155 5570652 6619251 7536754
1 4849756 7536751 4456552 7143529 7471201 7012467
2 6029433 6881357 6881390 7274595 6553710 3342433
3 6619228 7733358 6029427 6488162 6357104 6553710
4 7536737 7077980 6422633 7536732 7602281 2949221
5 6357104 7012451 6750305 7536741 7340124 7274610
6 7340141 6226036 7274612 7077999 6881387 6029428
7 6619243 6226041 6881378 6553710 7209065 6029415
8 6881378 6553710 7209065 7536743 7274588 6619248
9 6226030 7209065 6619231 6881380 7274612 3014770
```
## IMPORTANT - Read vs. Write
The big speedup benefit of bcpandas is in the `to_sql` function, as the benchmarks below show.
However, the bcpandas `read_sql` function actually performs **slower** than the pandas equivalent.
Therefore, the bcpandas `read_sql` function was deprecated in v5.0 and has now been removed in
v6.0+. To read data **from** SQL to pandas, use the native pandas method `pd.read_sql_table` or
`pd.read_sql_query`.
## Benchmarks
See figures below. All code is in the `/benchmarks` directory. To run the benchmarks, from the root
directory of this repository, run `python benchmarks/benchmark.py main --help` and fill in the
command line options that are presented.
Running this will output
1. PNG image of the graph
2. JSON file of the benchmark data
3. JSON file with the environment details of the machine that was used to generate it
### to_sql
> I didn't bother including the pandas non-`multiinsert` version here because it just takes way too
> long

#### Why not just use the new pandas [`method='multi'`](https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-sql-method)?
1. Because it is still much slower
2. Because you are forced to set the `chunksize` parameter to a very small number for it to work -
generally a bit less then `2100/<number of columns>`. This is because SQL Server can only accept
up to 2100 parameters in a query. See
[here](https://stackoverflow.com/questions/50689082/to-sql-pyodbc-count-field-incorrect-or-syntax-error)
and [here](https://github.com/mkleehammer/pyodbc/issues/217) for more discussion on this, and
the recommendation to use a bulk insert tool such as BCP. It seems that SQL Server simply didn't
design the regular `INSERT` statement to support huge amounts of data.
### read_sql
As you can see, pandas native clearly wins here

## Requirements
### Database
Any version of Microsoft SQL Server. Can be installed on-prem, in the cloud, on a VM, or one of the
Azure versions.
### Python User
- [BCP](https://docs.microsoft.com/en-us/sql/tools/bcp-utility) Utility
- Microsoft ODBC Driver **11, 13, 13.1, or 17** for SQL Server.
([Microsoft Docs](https://docs.microsoft.com/en-us/sql/connect/odbc/download-odbc-driver-for-sql-server))
See the
[pyodbc docs](https://github.com/mkleehammer/pyodbc/wiki/Connecting-to-SQL-Server-from-Windows)
for more on different driver versions.
- Python >= 3.7
- `pandas` >= 0.19
- `sqlalchemy` >= 1.0
- `pyodbc` as the
[supported DBAPI](https://docs.sqlalchemy.org/en/13/dialects/mssql.html#module-sqlalchemy.dialects.mssql.pyodbc)
## Installation
| Source | Command |
| :----: | :-------------------------------------: |
| PyPI | `pip install bcpandas` |
| Conda | `conda install -c conda-forge bcpandas` |
## Usage
1. Create creds (see next section)
2. Replace any `df.to_sql(...)` in your code with `bcpandas.to_sql(df, ...)`
That's it!
### Credential/Connection object
Bcpandas requires a `bcpandas.SqlCreds` object in order to use it, and also a `sqlalchemy.Engine`.
The user has 2 options when constructing it.
1. Create the bcpandas `SqlCreds` object with just the minimum attributes needed (server, database,
username, password), and bcpandas will create a full `Engine` object from this. It will use
`pyodbc`, `sqlalchemy`, and the Microsoft ODBC Driver for SQL Server, and will store it in the
`.engine` attribute.
```python
In [1]: from bcpandas import SqlCreds
In [2]: creds = SqlCreds('my_server', 'my_db', 'my_username', 'my_password')
In [3]: creds.engine
Out[3]: Engine(mssql+pyodbc:///?odbc_connect=Driver={ODBC Driver 17 for SQL Server};Server=tcp:my_server,1433;Database=my_db;UID=my_username;PWD=my_password)
```
2. Pass a full `Engine` object to the bcpandas `SqlCreds` object, and bcpandas will attempt to
parse out the server, database, username, and password to pass to the command line utilities. If
a DSN is used, this will fail.
(continuing example above)
```python
In [4]: creds2 = SqlCreds.from_engine(creds.engine)
In [5]: creds2.engine
Out[5]: Engine(mssql+pyodbc:///?odbc_connect=Driver={ODBC Driver 17 for SQL Server};Server=tcp:my_server,1433;Database=my_db;UID=my_username;PWD=my_password)
In [6]: creds2
Out[6]: SqlCreds(server='my_server', database='my_db', username='my_username', with_krb_auth=False, engine=Engine(mssql+pyodbc:///?odbc_connect=Driver={ODBC Driver 17 for SQL Server};Server=tcp:my_server,1433;Database=my_db;UID=my_username;PWD=my_password), password=[REDACTED])
```
### Recommended Usage
| Feature | Pandas native | BCPandas |
| ------------------------------------------------- | :----------------: | :----------------: |
| Super speed | :x: | :white_check_mark: |
| Good for simple data types like numbers and dates | :x: | :white_check_mark: |
| Handle messy string data | :white_check_mark: | :x: |
> built with the help of https://www.tablesgenerator.com/markdown_tables# and
> https://gist.github.com/rxaviers/7360908
## Known Issues
Here are some caveats and limitations of bcpandas.
- Bcpandas has been tested with all ASCII characters 32-127. Unicode characters beyond that range
have not been tested.
- An empty string (`""`) in the dataframe becomes `NULL` in the SQL database instead of remaining
an empty string.
- Because bcpandas first outputs to CSV, it needs to use several specific characters to create the
CSV, including a _delimiter_ and a _quote character_. Bcpandas attempts to use characters that
are not present in the dataframe for this, going through the possilbe delimiters and quote
characters specified in `constants.py`. If all possible characters are present in the dataframe
and bcpandas cannot find both a delimiter and quote character to use, it will throw an error.
- The BCP utility does **not** ignore delimiter characters when surrounded by quotes, unlike
CSVs - see
[here](https://docs.microsoft.com/en-us/sql/relational-databases/import-export/specify-field-and-row-terminators-sql-server#characters-supported-as-terminators)
in the Microsoft docs.
- ~~If there is a NaN/Null in the last column of the dataframe it will throw an error. This is due
to a BCP issue. See my issue with Microsoft about this
[here](https://github.com/MicrosoftDocs/sql-docs/issues/2689).~~ This doesn't seem to be a
problem based on the tests.
## Background
Writing data from pandas DataFrames to a SQL database is very slow using the built-in `to_sql`
method, even with the newly introduced
[`execute_many`](https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-sql-method)
option. For Microsoft SQL Server, a far far faster method is to use the BCP utility provided by
Microsoft. This utility is a command line tool that transfers data to/from the database and flat
text files.
This package is a wrapper for seamlessly using the bcp utility from Python using a pandas
DataFrame. Despite the IO hits, the fastest option by far is saving the data to a CSV file in the
file system and using the bcp utility to transfer the CSV file to SQL Server. **Best of all, you
don't need to know anything about using BCP at all!**
### Existing Solutions
> Much credit is due to `bcpy` for the original idea and for some of the code that was adopted and
> changed.
<details>
<summary>bcpy</summary>
[bcpy](https://github.com/titan550/bcpy) has several flaws:
- No support for reading from SQL, only writing to SQL
- A convoluted, overly class-based internal design
- Scope a bit too broad - deals with pandas as well as flat files This repository aims to fix and
improve on `bcpy` and the above issues by making the design choices described earlier.
</details>
### Design and Scope
The _**only**_ scope of `bcpandas` is to read and write between a pandas DataFrame and a Microsoft
SQL Server database. That's it. We do _**not**_ concern ourselves with reading existing flat files
to/from SQL - that introduces _way_ to much complexity in trying to parse and decode the various
parts of the file, like delimiters, quote characters, and line endings. Instead, to read/write an
exiting flat file, just import it via pandas into a DataFrame, and then use `bcpandas`.
The big benefit of this is that we get to precicely control all the finicky parts of the text file
when we write/read it to a local file and then in the BCP utility. This lets us set library-wide
defaults (maybe configurable in the future) and work with those.
For now, we are using the non-XML BCP format file type. In the future, XML format files may be
added.
## Testing
### Testing Requirements
- Docker Desktop installed, either of the Linux or Windows runtimes, doesn't matter
- pytest
- hypothesis
- pytest-cov (coverage.py)
### What Is Tested?
We take testing very seriously here. In order to rely on a library like this in production, it
**MUST** be ruthlessly tested, which thankfully it is. Here is a partial list of what has been
tested so far. Pull Requests welcome!
- Data types: All ASCII characters 32-127 (using the Hypothesis library, see below). Unicode
characters beyond that range have not been tested.
- `numpy.NaN`, `None`
- `numpy.inf` (fails, as expected)
- Empty dataframe (nothing happens, database not modified)
- Duplicate column names (raises error)
- Database columns that are missing from the dataframe, are out of order, or both (passes)
- Extra dataframe columns that aren't in database, when `if_exists="append"` specified (fails)
### Testing Implementation
- Testing uses `pytest`.
- To test for all possible data types, we use the `hypothesis` library, instead of trying to come
up with every single case on our own.
- `pytest-cov` (which uses `coverage.py` under the hood) is used to measure code coverage. This is
then uploaded to [codecov.io](https://codecov.io/gh/yehoshuadimarsky/bcpandas) as part of the
CI/CD process (see below).
- In order to spin up a local SQL Server during testing, we use Docker. Specifically, we run one of
the images that Microsoft provides that already have SQL Server fully installed, all we have to
do is use the image to run a container. Here are the links to the
[Linux versions](https://hub.docker.com/_/microsoft-mssql-server) and the Windows versions -
[Express](https://hub.docker.com/r/microsoft/mssql-server-windows-express/) and
[Developer](https://hub.docker.com/r/microsoft/mssql-server-windows-developer).
- When running the tests, we can specify a specific Docker image to use, by invoking the custom
command line option called `--mssql-docker-image`. For example:
```bash
pytest bcpandas/tests --mssql-docker-image mcr.microsoft.com/mssql/server:2019-latest
```
- Instead of using the `subprocess` library to control Docker manually, we use the elegant
`docker-py` library which works very nicely. A `DockerDB` Python class is defined in
`bcpandas/tests/utils.py` and it wraps up all the Docker commands and functionality needed to use
SQL Server into one class. This class is used in `conftest.py` in the core bcpandas tests, and in
the `benchmarks/` directory for both the benchmarks code as well as the legacy tests for
`read_sql`.
## CI/CD
Github Actions is used for CI/CD, although it is still somewhat a work in progress.
## Contributing
Please, all contributions are very welcome!
I will attempt to use the `pandas` docstring style as detailed
[here](https://pandas.pydata.org/pandas-docs/stable/development/contributing_docstring.html).
## GitHub Stars Trend
[](https://starchart.cc/yehoshuadimarsky/bcpandas)
%package -n python3-bcpandas
Summary: High-level wrapper around BCP for high performance data transfers between pandas and SQL Server. No knowledge of BCP required!!
Provides: python-bcpandas
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-bcpandas
# bcpandas
[](https://pypi.org/project/bcpandas/)
[](https://anaconda.org/conda-forge/bcpandas)
[](https://github.com/yehoshuadimarsky/bcpandas/blob/master/LICENSE)
[](https://github.com/yehoshuadimarsky/bcpandas/actions/workflows/CI.yml)
[](https://codecov.io/gh/yehoshuadimarsky/bcpandas)
[](https://github.com/psf/black)
[](https://pypi.python.org/pypi/bcpandas/)
[](https://github.com/Naereen/badges)
[](https://pepy.tech/project/bcpandas)
[](https://results.pre-commit.ci/latest/github/yehoshuadimarsky/bcpandas/master)
High-level wrapper around BCP for high performance data transfers between pandas and SQL Server. No
knowledge of BCP required!! (pronounced _BEE-CEE-Pandas_)
<!-- START doctoc generated TOC please keep comment here to allow auto update -->
<!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->
- [Quickstart](#quickstart)
- [IMPORTANT - Read vs. Write](#important---read-vs-write)
- [Benchmarks](#benchmarks)
- [to_sql](#to_sql)
- [Why not just use the new pandas `method='multi'`?](#why-not-just-use-the-new-pandas-methodmulti)
- [read_sql](#read_sql)
- [Requirements](#requirements)
- [Database](#database)
- [Python User](#python-user)
- [Installation](#installation)
- [Usage](#usage)
- [Credential/Connection object](#credentialconnection-object)
- [Recommended Usage](#recommended-usage)
- [Known Issues](#known-issues)
- [Background](#background)
- [Existing Solutions](#existing-solutions)
- [Design and Scope](#design-and-scope)
- [Testing](#testing)
- [Testing Requirements](#testing-requirements)
- [What Is Tested?](#what-is-tested)
- [Testing Implementation](#testing-implementation)
- [CI/CD](#cicd)
- [Contributing](#contributing)
- [GitHub Stars Trend](#github-stars-trend)
<!-- END doctoc generated TOC please keep comment here to allow auto update -->
## Quickstart
```python
In [1]: import pandas as pd
...: import numpy as np
...:
...: from bcpandas import SqlCreds, to_sql
In [2]: creds = SqlCreds(
...: 'my_server',
...: 'my_db',
...: 'my_username',
...: 'my_password'
...: )
In [3]: df = pd.DataFrame(
...: data=np.ndarray(shape=(10, 6), dtype=int),
...: columns=[f"col_{x}" for x in range(6)]
...: )
In [4]: df
Out[4]:
col_0 col_1 col_2 col_3 col_4 col_5
0 4128860 6029375 3801155 5570652 6619251 7536754
1 4849756 7536751 4456552 7143529 7471201 7012467
2 6029433 6881357 6881390 7274595 6553710 3342433
3 6619228 7733358 6029427 6488162 6357104 6553710
4 7536737 7077980 6422633 7536732 7602281 2949221
5 6357104 7012451 6750305 7536741 7340124 7274610
6 7340141 6226036 7274612 7077999 6881387 6029428
7 6619243 6226041 6881378 6553710 7209065 6029415
8 6881378 6553710 7209065 7536743 7274588 6619248
9 6226030 7209065 6619231 6881380 7274612 3014770
In [5]: to_sql(df, 'my_test_table', creds, index=False, if_exists='replace')
In [6]: df2 = pd.read_sql_table(table_name='my_test_table', con=creds.engine)
In [7]: df2
Out[7]:
col_0 col_1 col_2 col_3 col_4 col_5
0 4128860 6029375 3801155 5570652 6619251 7536754
1 4849756 7536751 4456552 7143529 7471201 7012467
2 6029433 6881357 6881390 7274595 6553710 3342433
3 6619228 7733358 6029427 6488162 6357104 6553710
4 7536737 7077980 6422633 7536732 7602281 2949221
5 6357104 7012451 6750305 7536741 7340124 7274610
6 7340141 6226036 7274612 7077999 6881387 6029428
7 6619243 6226041 6881378 6553710 7209065 6029415
8 6881378 6553710 7209065 7536743 7274588 6619248
9 6226030 7209065 6619231 6881380 7274612 3014770
```
## IMPORTANT - Read vs. Write
The big speedup benefit of bcpandas is in the `to_sql` function, as the benchmarks below show.
However, the bcpandas `read_sql` function actually performs **slower** than the pandas equivalent.
Therefore, the bcpandas `read_sql` function was deprecated in v5.0 and has now been removed in
v6.0+. To read data **from** SQL to pandas, use the native pandas method `pd.read_sql_table` or
`pd.read_sql_query`.
## Benchmarks
See figures below. All code is in the `/benchmarks` directory. To run the benchmarks, from the root
directory of this repository, run `python benchmarks/benchmark.py main --help` and fill in the
command line options that are presented.
Running this will output
1. PNG image of the graph
2. JSON file of the benchmark data
3. JSON file with the environment details of the machine that was used to generate it
### to_sql
> I didn't bother including the pandas non-`multiinsert` version here because it just takes way too
> long

#### Why not just use the new pandas [`method='multi'`](https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-sql-method)?
1. Because it is still much slower
2. Because you are forced to set the `chunksize` parameter to a very small number for it to work -
generally a bit less then `2100/<number of columns>`. This is because SQL Server can only accept
up to 2100 parameters in a query. See
[here](https://stackoverflow.com/questions/50689082/to-sql-pyodbc-count-field-incorrect-or-syntax-error)
and [here](https://github.com/mkleehammer/pyodbc/issues/217) for more discussion on this, and
the recommendation to use a bulk insert tool such as BCP. It seems that SQL Server simply didn't
design the regular `INSERT` statement to support huge amounts of data.
### read_sql
As you can see, pandas native clearly wins here

## Requirements
### Database
Any version of Microsoft SQL Server. Can be installed on-prem, in the cloud, on a VM, or one of the
Azure versions.
### Python User
- [BCP](https://docs.microsoft.com/en-us/sql/tools/bcp-utility) Utility
- Microsoft ODBC Driver **11, 13, 13.1, or 17** for SQL Server.
([Microsoft Docs](https://docs.microsoft.com/en-us/sql/connect/odbc/download-odbc-driver-for-sql-server))
See the
[pyodbc docs](https://github.com/mkleehammer/pyodbc/wiki/Connecting-to-SQL-Server-from-Windows)
for more on different driver versions.
- Python >= 3.7
- `pandas` >= 0.19
- `sqlalchemy` >= 1.0
- `pyodbc` as the
[supported DBAPI](https://docs.sqlalchemy.org/en/13/dialects/mssql.html#module-sqlalchemy.dialects.mssql.pyodbc)
## Installation
| Source | Command |
| :----: | :-------------------------------------: |
| PyPI | `pip install bcpandas` |
| Conda | `conda install -c conda-forge bcpandas` |
## Usage
1. Create creds (see next section)
2. Replace any `df.to_sql(...)` in your code with `bcpandas.to_sql(df, ...)`
That's it!
### Credential/Connection object
Bcpandas requires a `bcpandas.SqlCreds` object in order to use it, and also a `sqlalchemy.Engine`.
The user has 2 options when constructing it.
1. Create the bcpandas `SqlCreds` object with just the minimum attributes needed (server, database,
username, password), and bcpandas will create a full `Engine` object from this. It will use
`pyodbc`, `sqlalchemy`, and the Microsoft ODBC Driver for SQL Server, and will store it in the
`.engine` attribute.
```python
In [1]: from bcpandas import SqlCreds
In [2]: creds = SqlCreds('my_server', 'my_db', 'my_username', 'my_password')
In [3]: creds.engine
Out[3]: Engine(mssql+pyodbc:///?odbc_connect=Driver={ODBC Driver 17 for SQL Server};Server=tcp:my_server,1433;Database=my_db;UID=my_username;PWD=my_password)
```
2. Pass a full `Engine` object to the bcpandas `SqlCreds` object, and bcpandas will attempt to
parse out the server, database, username, and password to pass to the command line utilities. If
a DSN is used, this will fail.
(continuing example above)
```python
In [4]: creds2 = SqlCreds.from_engine(creds.engine)
In [5]: creds2.engine
Out[5]: Engine(mssql+pyodbc:///?odbc_connect=Driver={ODBC Driver 17 for SQL Server};Server=tcp:my_server,1433;Database=my_db;UID=my_username;PWD=my_password)
In [6]: creds2
Out[6]: SqlCreds(server='my_server', database='my_db', username='my_username', with_krb_auth=False, engine=Engine(mssql+pyodbc:///?odbc_connect=Driver={ODBC Driver 17 for SQL Server};Server=tcp:my_server,1433;Database=my_db;UID=my_username;PWD=my_password), password=[REDACTED])
```
### Recommended Usage
| Feature | Pandas native | BCPandas |
| ------------------------------------------------- | :----------------: | :----------------: |
| Super speed | :x: | :white_check_mark: |
| Good for simple data types like numbers and dates | :x: | :white_check_mark: |
| Handle messy string data | :white_check_mark: | :x: |
> built with the help of https://www.tablesgenerator.com/markdown_tables# and
> https://gist.github.com/rxaviers/7360908
## Known Issues
Here are some caveats and limitations of bcpandas.
- Bcpandas has been tested with all ASCII characters 32-127. Unicode characters beyond that range
have not been tested.
- An empty string (`""`) in the dataframe becomes `NULL` in the SQL database instead of remaining
an empty string.
- Because bcpandas first outputs to CSV, it needs to use several specific characters to create the
CSV, including a _delimiter_ and a _quote character_. Bcpandas attempts to use characters that
are not present in the dataframe for this, going through the possilbe delimiters and quote
characters specified in `constants.py`. If all possible characters are present in the dataframe
and bcpandas cannot find both a delimiter and quote character to use, it will throw an error.
- The BCP utility does **not** ignore delimiter characters when surrounded by quotes, unlike
CSVs - see
[here](https://docs.microsoft.com/en-us/sql/relational-databases/import-export/specify-field-and-row-terminators-sql-server#characters-supported-as-terminators)
in the Microsoft docs.
- ~~If there is a NaN/Null in the last column of the dataframe it will throw an error. This is due
to a BCP issue. See my issue with Microsoft about this
[here](https://github.com/MicrosoftDocs/sql-docs/issues/2689).~~ This doesn't seem to be a
problem based on the tests.
## Background
Writing data from pandas DataFrames to a SQL database is very slow using the built-in `to_sql`
method, even with the newly introduced
[`execute_many`](https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-sql-method)
option. For Microsoft SQL Server, a far far faster method is to use the BCP utility provided by
Microsoft. This utility is a command line tool that transfers data to/from the database and flat
text files.
This package is a wrapper for seamlessly using the bcp utility from Python using a pandas
DataFrame. Despite the IO hits, the fastest option by far is saving the data to a CSV file in the
file system and using the bcp utility to transfer the CSV file to SQL Server. **Best of all, you
don't need to know anything about using BCP at all!**
### Existing Solutions
> Much credit is due to `bcpy` for the original idea and for some of the code that was adopted and
> changed.
<details>
<summary>bcpy</summary>
[bcpy](https://github.com/titan550/bcpy) has several flaws:
- No support for reading from SQL, only writing to SQL
- A convoluted, overly class-based internal design
- Scope a bit too broad - deals with pandas as well as flat files This repository aims to fix and
improve on `bcpy` and the above issues by making the design choices described earlier.
</details>
### Design and Scope
The _**only**_ scope of `bcpandas` is to read and write between a pandas DataFrame and a Microsoft
SQL Server database. That's it. We do _**not**_ concern ourselves with reading existing flat files
to/from SQL - that introduces _way_ to much complexity in trying to parse and decode the various
parts of the file, like delimiters, quote characters, and line endings. Instead, to read/write an
exiting flat file, just import it via pandas into a DataFrame, and then use `bcpandas`.
The big benefit of this is that we get to precicely control all the finicky parts of the text file
when we write/read it to a local file and then in the BCP utility. This lets us set library-wide
defaults (maybe configurable in the future) and work with those.
For now, we are using the non-XML BCP format file type. In the future, XML format files may be
added.
## Testing
### Testing Requirements
- Docker Desktop installed, either of the Linux or Windows runtimes, doesn't matter
- pytest
- hypothesis
- pytest-cov (coverage.py)
### What Is Tested?
We take testing very seriously here. In order to rely on a library like this in production, it
**MUST** be ruthlessly tested, which thankfully it is. Here is a partial list of what has been
tested so far. Pull Requests welcome!
- Data types: All ASCII characters 32-127 (using the Hypothesis library, see below). Unicode
characters beyond that range have not been tested.
- `numpy.NaN`, `None`
- `numpy.inf` (fails, as expected)
- Empty dataframe (nothing happens, database not modified)
- Duplicate column names (raises error)
- Database columns that are missing from the dataframe, are out of order, or both (passes)
- Extra dataframe columns that aren't in database, when `if_exists="append"` specified (fails)
### Testing Implementation
- Testing uses `pytest`.
- To test for all possible data types, we use the `hypothesis` library, instead of trying to come
up with every single case on our own.
- `pytest-cov` (which uses `coverage.py` under the hood) is used to measure code coverage. This is
then uploaded to [codecov.io](https://codecov.io/gh/yehoshuadimarsky/bcpandas) as part of the
CI/CD process (see below).
- In order to spin up a local SQL Server during testing, we use Docker. Specifically, we run one of
the images that Microsoft provides that already have SQL Server fully installed, all we have to
do is use the image to run a container. Here are the links to the
[Linux versions](https://hub.docker.com/_/microsoft-mssql-server) and the Windows versions -
[Express](https://hub.docker.com/r/microsoft/mssql-server-windows-express/) and
[Developer](https://hub.docker.com/r/microsoft/mssql-server-windows-developer).
- When running the tests, we can specify a specific Docker image to use, by invoking the custom
command line option called `--mssql-docker-image`. For example:
```bash
pytest bcpandas/tests --mssql-docker-image mcr.microsoft.com/mssql/server:2019-latest
```
- Instead of using the `subprocess` library to control Docker manually, we use the elegant
`docker-py` library which works very nicely. A `DockerDB` Python class is defined in
`bcpandas/tests/utils.py` and it wraps up all the Docker commands and functionality needed to use
SQL Server into one class. This class is used in `conftest.py` in the core bcpandas tests, and in
the `benchmarks/` directory for both the benchmarks code as well as the legacy tests for
`read_sql`.
## CI/CD
Github Actions is used for CI/CD, although it is still somewhat a work in progress.
## Contributing
Please, all contributions are very welcome!
I will attempt to use the `pandas` docstring style as detailed
[here](https://pandas.pydata.org/pandas-docs/stable/development/contributing_docstring.html).
## GitHub Stars Trend
[](https://starchart.cc/yehoshuadimarsky/bcpandas)
%package help
Summary: Development documents and examples for bcpandas
Provides: python3-bcpandas-doc
%description help
# bcpandas
[](https://pypi.org/project/bcpandas/)
[](https://anaconda.org/conda-forge/bcpandas)
[](https://github.com/yehoshuadimarsky/bcpandas/blob/master/LICENSE)
[](https://github.com/yehoshuadimarsky/bcpandas/actions/workflows/CI.yml)
[](https://codecov.io/gh/yehoshuadimarsky/bcpandas)
[](https://github.com/psf/black)
[](https://pypi.python.org/pypi/bcpandas/)
[](https://github.com/Naereen/badges)
[](https://pepy.tech/project/bcpandas)
[](https://results.pre-commit.ci/latest/github/yehoshuadimarsky/bcpandas/master)
High-level wrapper around BCP for high performance data transfers between pandas and SQL Server. No
knowledge of BCP required!! (pronounced _BEE-CEE-Pandas_)
<!-- START doctoc generated TOC please keep comment here to allow auto update -->
<!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->
- [Quickstart](#quickstart)
- [IMPORTANT - Read vs. Write](#important---read-vs-write)
- [Benchmarks](#benchmarks)
- [to_sql](#to_sql)
- [Why not just use the new pandas `method='multi'`?](#why-not-just-use-the-new-pandas-methodmulti)
- [read_sql](#read_sql)
- [Requirements](#requirements)
- [Database](#database)
- [Python User](#python-user)
- [Installation](#installation)
- [Usage](#usage)
- [Credential/Connection object](#credentialconnection-object)
- [Recommended Usage](#recommended-usage)
- [Known Issues](#known-issues)
- [Background](#background)
- [Existing Solutions](#existing-solutions)
- [Design and Scope](#design-and-scope)
- [Testing](#testing)
- [Testing Requirements](#testing-requirements)
- [What Is Tested?](#what-is-tested)
- [Testing Implementation](#testing-implementation)
- [CI/CD](#cicd)
- [Contributing](#contributing)
- [GitHub Stars Trend](#github-stars-trend)
<!-- END doctoc generated TOC please keep comment here to allow auto update -->
## Quickstart
```python
In [1]: import pandas as pd
...: import numpy as np
...:
...: from bcpandas import SqlCreds, to_sql
In [2]: creds = SqlCreds(
...: 'my_server',
...: 'my_db',
...: 'my_username',
...: 'my_password'
...: )
In [3]: df = pd.DataFrame(
...: data=np.ndarray(shape=(10, 6), dtype=int),
...: columns=[f"col_{x}" for x in range(6)]
...: )
In [4]: df
Out[4]:
col_0 col_1 col_2 col_3 col_4 col_5
0 4128860 6029375 3801155 5570652 6619251 7536754
1 4849756 7536751 4456552 7143529 7471201 7012467
2 6029433 6881357 6881390 7274595 6553710 3342433
3 6619228 7733358 6029427 6488162 6357104 6553710
4 7536737 7077980 6422633 7536732 7602281 2949221
5 6357104 7012451 6750305 7536741 7340124 7274610
6 7340141 6226036 7274612 7077999 6881387 6029428
7 6619243 6226041 6881378 6553710 7209065 6029415
8 6881378 6553710 7209065 7536743 7274588 6619248
9 6226030 7209065 6619231 6881380 7274612 3014770
In [5]: to_sql(df, 'my_test_table', creds, index=False, if_exists='replace')
In [6]: df2 = pd.read_sql_table(table_name='my_test_table', con=creds.engine)
In [7]: df2
Out[7]:
col_0 col_1 col_2 col_3 col_4 col_5
0 4128860 6029375 3801155 5570652 6619251 7536754
1 4849756 7536751 4456552 7143529 7471201 7012467
2 6029433 6881357 6881390 7274595 6553710 3342433
3 6619228 7733358 6029427 6488162 6357104 6553710
4 7536737 7077980 6422633 7536732 7602281 2949221
5 6357104 7012451 6750305 7536741 7340124 7274610
6 7340141 6226036 7274612 7077999 6881387 6029428
7 6619243 6226041 6881378 6553710 7209065 6029415
8 6881378 6553710 7209065 7536743 7274588 6619248
9 6226030 7209065 6619231 6881380 7274612 3014770
```
## IMPORTANT - Read vs. Write
The big speedup benefit of bcpandas is in the `to_sql` function, as the benchmarks below show.
However, the bcpandas `read_sql` function actually performs **slower** than the pandas equivalent.
Therefore, the bcpandas `read_sql` function was deprecated in v5.0 and has now been removed in
v6.0+. To read data **from** SQL to pandas, use the native pandas method `pd.read_sql_table` or
`pd.read_sql_query`.
## Benchmarks
See figures below. All code is in the `/benchmarks` directory. To run the benchmarks, from the root
directory of this repository, run `python benchmarks/benchmark.py main --help` and fill in the
command line options that are presented.
Running this will output
1. PNG image of the graph
2. JSON file of the benchmark data
3. JSON file with the environment details of the machine that was used to generate it
### to_sql
> I didn't bother including the pandas non-`multiinsert` version here because it just takes way too
> long

#### Why not just use the new pandas [`method='multi'`](https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-sql-method)?
1. Because it is still much slower
2. Because you are forced to set the `chunksize` parameter to a very small number for it to work -
generally a bit less then `2100/<number of columns>`. This is because SQL Server can only accept
up to 2100 parameters in a query. See
[here](https://stackoverflow.com/questions/50689082/to-sql-pyodbc-count-field-incorrect-or-syntax-error)
and [here](https://github.com/mkleehammer/pyodbc/issues/217) for more discussion on this, and
the recommendation to use a bulk insert tool such as BCP. It seems that SQL Server simply didn't
design the regular `INSERT` statement to support huge amounts of data.
### read_sql
As you can see, pandas native clearly wins here

## Requirements
### Database
Any version of Microsoft SQL Server. Can be installed on-prem, in the cloud, on a VM, or one of the
Azure versions.
### Python User
- [BCP](https://docs.microsoft.com/en-us/sql/tools/bcp-utility) Utility
- Microsoft ODBC Driver **11, 13, 13.1, or 17** for SQL Server.
([Microsoft Docs](https://docs.microsoft.com/en-us/sql/connect/odbc/download-odbc-driver-for-sql-server))
See the
[pyodbc docs](https://github.com/mkleehammer/pyodbc/wiki/Connecting-to-SQL-Server-from-Windows)
for more on different driver versions.
- Python >= 3.7
- `pandas` >= 0.19
- `sqlalchemy` >= 1.0
- `pyodbc` as the
[supported DBAPI](https://docs.sqlalchemy.org/en/13/dialects/mssql.html#module-sqlalchemy.dialects.mssql.pyodbc)
## Installation
| Source | Command |
| :----: | :-------------------------------------: |
| PyPI | `pip install bcpandas` |
| Conda | `conda install -c conda-forge bcpandas` |
## Usage
1. Create creds (see next section)
2. Replace any `df.to_sql(...)` in your code with `bcpandas.to_sql(df, ...)`
That's it!
### Credential/Connection object
Bcpandas requires a `bcpandas.SqlCreds` object in order to use it, and also a `sqlalchemy.Engine`.
The user has 2 options when constructing it.
1. Create the bcpandas `SqlCreds` object with just the minimum attributes needed (server, database,
username, password), and bcpandas will create a full `Engine` object from this. It will use
`pyodbc`, `sqlalchemy`, and the Microsoft ODBC Driver for SQL Server, and will store it in the
`.engine` attribute.
```python
In [1]: from bcpandas import SqlCreds
In [2]: creds = SqlCreds('my_server', 'my_db', 'my_username', 'my_password')
In [3]: creds.engine
Out[3]: Engine(mssql+pyodbc:///?odbc_connect=Driver={ODBC Driver 17 for SQL Server};Server=tcp:my_server,1433;Database=my_db;UID=my_username;PWD=my_password)
```
2. Pass a full `Engine` object to the bcpandas `SqlCreds` object, and bcpandas will attempt to
parse out the server, database, username, and password to pass to the command line utilities. If
a DSN is used, this will fail.
(continuing example above)
```python
In [4]: creds2 = SqlCreds.from_engine(creds.engine)
In [5]: creds2.engine
Out[5]: Engine(mssql+pyodbc:///?odbc_connect=Driver={ODBC Driver 17 for SQL Server};Server=tcp:my_server,1433;Database=my_db;UID=my_username;PWD=my_password)
In [6]: creds2
Out[6]: SqlCreds(server='my_server', database='my_db', username='my_username', with_krb_auth=False, engine=Engine(mssql+pyodbc:///?odbc_connect=Driver={ODBC Driver 17 for SQL Server};Server=tcp:my_server,1433;Database=my_db;UID=my_username;PWD=my_password), password=[REDACTED])
```
### Recommended Usage
| Feature | Pandas native | BCPandas |
| ------------------------------------------------- | :----------------: | :----------------: |
| Super speed | :x: | :white_check_mark: |
| Good for simple data types like numbers and dates | :x: | :white_check_mark: |
| Handle messy string data | :white_check_mark: | :x: |
> built with the help of https://www.tablesgenerator.com/markdown_tables# and
> https://gist.github.com/rxaviers/7360908
## Known Issues
Here are some caveats and limitations of bcpandas.
- Bcpandas has been tested with all ASCII characters 32-127. Unicode characters beyond that range
have not been tested.
- An empty string (`""`) in the dataframe becomes `NULL` in the SQL database instead of remaining
an empty string.
- Because bcpandas first outputs to CSV, it needs to use several specific characters to create the
CSV, including a _delimiter_ and a _quote character_. Bcpandas attempts to use characters that
are not present in the dataframe for this, going through the possilbe delimiters and quote
characters specified in `constants.py`. If all possible characters are present in the dataframe
and bcpandas cannot find both a delimiter and quote character to use, it will throw an error.
- The BCP utility does **not** ignore delimiter characters when surrounded by quotes, unlike
CSVs - see
[here](https://docs.microsoft.com/en-us/sql/relational-databases/import-export/specify-field-and-row-terminators-sql-server#characters-supported-as-terminators)
in the Microsoft docs.
- ~~If there is a NaN/Null in the last column of the dataframe it will throw an error. This is due
to a BCP issue. See my issue with Microsoft about this
[here](https://github.com/MicrosoftDocs/sql-docs/issues/2689).~~ This doesn't seem to be a
problem based on the tests.
## Background
Writing data from pandas DataFrames to a SQL database is very slow using the built-in `to_sql`
method, even with the newly introduced
[`execute_many`](https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-sql-method)
option. For Microsoft SQL Server, a far far faster method is to use the BCP utility provided by
Microsoft. This utility is a command line tool that transfers data to/from the database and flat
text files.
This package is a wrapper for seamlessly using the bcp utility from Python using a pandas
DataFrame. Despite the IO hits, the fastest option by far is saving the data to a CSV file in the
file system and using the bcp utility to transfer the CSV file to SQL Server. **Best of all, you
don't need to know anything about using BCP at all!**
### Existing Solutions
> Much credit is due to `bcpy` for the original idea and for some of the code that was adopted and
> changed.
<details>
<summary>bcpy</summary>
[bcpy](https://github.com/titan550/bcpy) has several flaws:
- No support for reading from SQL, only writing to SQL
- A convoluted, overly class-based internal design
- Scope a bit too broad - deals with pandas as well as flat files This repository aims to fix and
improve on `bcpy` and the above issues by making the design choices described earlier.
</details>
### Design and Scope
The _**only**_ scope of `bcpandas` is to read and write between a pandas DataFrame and a Microsoft
SQL Server database. That's it. We do _**not**_ concern ourselves with reading existing flat files
to/from SQL - that introduces _way_ to much complexity in trying to parse and decode the various
parts of the file, like delimiters, quote characters, and line endings. Instead, to read/write an
exiting flat file, just import it via pandas into a DataFrame, and then use `bcpandas`.
The big benefit of this is that we get to precicely control all the finicky parts of the text file
when we write/read it to a local file and then in the BCP utility. This lets us set library-wide
defaults (maybe configurable in the future) and work with those.
For now, we are using the non-XML BCP format file type. In the future, XML format files may be
added.
## Testing
### Testing Requirements
- Docker Desktop installed, either of the Linux or Windows runtimes, doesn't matter
- pytest
- hypothesis
- pytest-cov (coverage.py)
### What Is Tested?
We take testing very seriously here. In order to rely on a library like this in production, it
**MUST** be ruthlessly tested, which thankfully it is. Here is a partial list of what has been
tested so far. Pull Requests welcome!
- Data types: All ASCII characters 32-127 (using the Hypothesis library, see below). Unicode
characters beyond that range have not been tested.
- `numpy.NaN`, `None`
- `numpy.inf` (fails, as expected)
- Empty dataframe (nothing happens, database not modified)
- Duplicate column names (raises error)
- Database columns that are missing from the dataframe, are out of order, or both (passes)
- Extra dataframe columns that aren't in database, when `if_exists="append"` specified (fails)
### Testing Implementation
- Testing uses `pytest`.
- To test for all possible data types, we use the `hypothesis` library, instead of trying to come
up with every single case on our own.
- `pytest-cov` (which uses `coverage.py` under the hood) is used to measure code coverage. This is
then uploaded to [codecov.io](https://codecov.io/gh/yehoshuadimarsky/bcpandas) as part of the
CI/CD process (see below).
- In order to spin up a local SQL Server during testing, we use Docker. Specifically, we run one of
the images that Microsoft provides that already have SQL Server fully installed, all we have to
do is use the image to run a container. Here are the links to the
[Linux versions](https://hub.docker.com/_/microsoft-mssql-server) and the Windows versions -
[Express](https://hub.docker.com/r/microsoft/mssql-server-windows-express/) and
[Developer](https://hub.docker.com/r/microsoft/mssql-server-windows-developer).
- When running the tests, we can specify a specific Docker image to use, by invoking the custom
command line option called `--mssql-docker-image`. For example:
```bash
pytest bcpandas/tests --mssql-docker-image mcr.microsoft.com/mssql/server:2019-latest
```
- Instead of using the `subprocess` library to control Docker manually, we use the elegant
`docker-py` library which works very nicely. A `DockerDB` Python class is defined in
`bcpandas/tests/utils.py` and it wraps up all the Docker commands and functionality needed to use
SQL Server into one class. This class is used in `conftest.py` in the core bcpandas tests, and in
the `benchmarks/` directory for both the benchmarks code as well as the legacy tests for
`read_sql`.
## CI/CD
Github Actions is used for CI/CD, although it is still somewhat a work in progress.
## Contributing
Please, all contributions are very welcome!
I will attempt to use the `pandas` docstring style as detailed
[here](https://pandas.pydata.org/pandas-docs/stable/development/contributing_docstring.html).
## GitHub Stars Trend
[](https://starchart.cc/yehoshuadimarsky/bcpandas)
%prep
%autosetup -n bcpandas-2.4.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-bcpandas -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 2.4.0-1
- Package Spec generated
|