1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
%global _empty_manifest_terminate_build 0
Name: python-bcpy
Version: 0.1.8
Release: 1
Summary: Microsoft SQL Server bcp (Bulk Copy) wrapper
License: MIT License
URL: https://github.com/titan550/bcpy
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/f5/55/2ce7ad290d4907cd420424a8e685c2b39c453cebda3aa0e549a424fddf9d/bcpy-0.1.8.tar.gz
BuildArch: noarch
%description
# bcpy
<table>
<tr>
<td>Latest Release</td>
<td>
<a href="https://pypi.org/project/bcpy/">
<img src="https://img.shields.io/pypi/v/bcpy.svg" alt="latest release" />
</a>
</td>
</tr>
<tr>
<td>License</td>
<td>
<a href="https://github.com/titan550/bcpy/blob/master/LICENSE">
<img src="https://img.shields.io/pypi/l/bcpy.svg" alt="license" />
</a>
</td>
</tr>
<tr>
<td>Build Status (master)</td>
<td>
<a href="https://travis-ci.org/titan550/bcpy">
<img src="https://api.travis-ci.org/titan550/bcpy.svg?branch=master" alt="travis build status" />
</a>
</td>
</tr>
</table>
## What is it?
This package is a wrapper for Microsoft's SQL Server bcp utility. Current database drivers available in Python are not fast enough for transferring millions of records (yes, I have tried [pyodbc fast_execute_many](https://github.com/mkleehammer/pyodbc/wiki/Features-beyond-the-DB-API#fast_executemany)). Despite the IO hits, the fastest option by far is saving the data to a CSV file in file system (preferably /dev/shm tmpfs) and using the bcp utility to transfer the CSV file to SQL Server.
## How Can I Install It?
1. Make sure your computeer has the [requirements](#requirements).
1. You can download and install this package from PyPI repository by running the command below.
```bash
pip install bcpy
```
## Examples
Following examples show you how to load (1) flat files and (2) DataFrame objects to SQL Server using this package.
### Flat File
Following example assumes that you have a comma separated file with no qualifier in path 'tests/data1.csv'. The code below sends the the file to SQL Server.
```python
import bcpy
sql_config = {
'server': 'sql_server_hostname',
'database': 'database_name',
'username': 'test_user',
'password': 'test_user_password1234'
}
sql_table_name = 'test_data1'
csv_file_path = 'tests/data1.csv'
flat_file = bcpy.FlatFile(qualifier='', path=csv_file_path)
sql_table = bcpy.SqlTable(sql_config, table=sql_table_name)
flat_file.to_sql(sql_table)
```
### DataFrame
The following example creates a DataFrame with 100 rows and 4 columns populated with random data and then it sends it to SQL Server.
```python
import bcpy
import numpy as np
import pandas as pd
sql_config = {
'server': 'sql_server_hostname',
'database': 'database_name',
'username': 'test_user',
'password': 'test_user_password1234'
}
table_name = 'test_dataframe'
df = pd.DataFrame(np.random.randint(-100, 100, size=(100, 4)),
columns=list('ABCD'))
bdf = bcpy.DataFrame(df)
sql_table = bcpy.SqlTable(sql_config, table=table_name)
bdf.to_sql(sql_table)
```
## Requirements
You need a working version of Microsoft bcp installed in your system. Your PATH environment variable should contain the directory of the bcp utility. Following are the installation tutorials for different operating systems.
- [Dockerfile (Ubuntu 18.04)](./bcp.Dockerfile)
- [Linux](https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-tools)
- [Mac](https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-tools?view=sql-server-2017#macos)
- [Windows](https://docs.microsoft.com/en-us/sql/tools/bcp-utility)
%package -n python3-bcpy
Summary: Microsoft SQL Server bcp (Bulk Copy) wrapper
Provides: python-bcpy
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-bcpy
# bcpy
<table>
<tr>
<td>Latest Release</td>
<td>
<a href="https://pypi.org/project/bcpy/">
<img src="https://img.shields.io/pypi/v/bcpy.svg" alt="latest release" />
</a>
</td>
</tr>
<tr>
<td>License</td>
<td>
<a href="https://github.com/titan550/bcpy/blob/master/LICENSE">
<img src="https://img.shields.io/pypi/l/bcpy.svg" alt="license" />
</a>
</td>
</tr>
<tr>
<td>Build Status (master)</td>
<td>
<a href="https://travis-ci.org/titan550/bcpy">
<img src="https://api.travis-ci.org/titan550/bcpy.svg?branch=master" alt="travis build status" />
</a>
</td>
</tr>
</table>
## What is it?
This package is a wrapper for Microsoft's SQL Server bcp utility. Current database drivers available in Python are not fast enough for transferring millions of records (yes, I have tried [pyodbc fast_execute_many](https://github.com/mkleehammer/pyodbc/wiki/Features-beyond-the-DB-API#fast_executemany)). Despite the IO hits, the fastest option by far is saving the data to a CSV file in file system (preferably /dev/shm tmpfs) and using the bcp utility to transfer the CSV file to SQL Server.
## How Can I Install It?
1. Make sure your computeer has the [requirements](#requirements).
1. You can download and install this package from PyPI repository by running the command below.
```bash
pip install bcpy
```
## Examples
Following examples show you how to load (1) flat files and (2) DataFrame objects to SQL Server using this package.
### Flat File
Following example assumes that you have a comma separated file with no qualifier in path 'tests/data1.csv'. The code below sends the the file to SQL Server.
```python
import bcpy
sql_config = {
'server': 'sql_server_hostname',
'database': 'database_name',
'username': 'test_user',
'password': 'test_user_password1234'
}
sql_table_name = 'test_data1'
csv_file_path = 'tests/data1.csv'
flat_file = bcpy.FlatFile(qualifier='', path=csv_file_path)
sql_table = bcpy.SqlTable(sql_config, table=sql_table_name)
flat_file.to_sql(sql_table)
```
### DataFrame
The following example creates a DataFrame with 100 rows and 4 columns populated with random data and then it sends it to SQL Server.
```python
import bcpy
import numpy as np
import pandas as pd
sql_config = {
'server': 'sql_server_hostname',
'database': 'database_name',
'username': 'test_user',
'password': 'test_user_password1234'
}
table_name = 'test_dataframe'
df = pd.DataFrame(np.random.randint(-100, 100, size=(100, 4)),
columns=list('ABCD'))
bdf = bcpy.DataFrame(df)
sql_table = bcpy.SqlTable(sql_config, table=table_name)
bdf.to_sql(sql_table)
```
## Requirements
You need a working version of Microsoft bcp installed in your system. Your PATH environment variable should contain the directory of the bcp utility. Following are the installation tutorials for different operating systems.
- [Dockerfile (Ubuntu 18.04)](./bcp.Dockerfile)
- [Linux](https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-tools)
- [Mac](https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-tools?view=sql-server-2017#macos)
- [Windows](https://docs.microsoft.com/en-us/sql/tools/bcp-utility)
%package help
Summary: Development documents and examples for bcpy
Provides: python3-bcpy-doc
%description help
# bcpy
<table>
<tr>
<td>Latest Release</td>
<td>
<a href="https://pypi.org/project/bcpy/">
<img src="https://img.shields.io/pypi/v/bcpy.svg" alt="latest release" />
</a>
</td>
</tr>
<tr>
<td>License</td>
<td>
<a href="https://github.com/titan550/bcpy/blob/master/LICENSE">
<img src="https://img.shields.io/pypi/l/bcpy.svg" alt="license" />
</a>
</td>
</tr>
<tr>
<td>Build Status (master)</td>
<td>
<a href="https://travis-ci.org/titan550/bcpy">
<img src="https://api.travis-ci.org/titan550/bcpy.svg?branch=master" alt="travis build status" />
</a>
</td>
</tr>
</table>
## What is it?
This package is a wrapper for Microsoft's SQL Server bcp utility. Current database drivers available in Python are not fast enough for transferring millions of records (yes, I have tried [pyodbc fast_execute_many](https://github.com/mkleehammer/pyodbc/wiki/Features-beyond-the-DB-API#fast_executemany)). Despite the IO hits, the fastest option by far is saving the data to a CSV file in file system (preferably /dev/shm tmpfs) and using the bcp utility to transfer the CSV file to SQL Server.
## How Can I Install It?
1. Make sure your computeer has the [requirements](#requirements).
1. You can download and install this package from PyPI repository by running the command below.
```bash
pip install bcpy
```
## Examples
Following examples show you how to load (1) flat files and (2) DataFrame objects to SQL Server using this package.
### Flat File
Following example assumes that you have a comma separated file with no qualifier in path 'tests/data1.csv'. The code below sends the the file to SQL Server.
```python
import bcpy
sql_config = {
'server': 'sql_server_hostname',
'database': 'database_name',
'username': 'test_user',
'password': 'test_user_password1234'
}
sql_table_name = 'test_data1'
csv_file_path = 'tests/data1.csv'
flat_file = bcpy.FlatFile(qualifier='', path=csv_file_path)
sql_table = bcpy.SqlTable(sql_config, table=sql_table_name)
flat_file.to_sql(sql_table)
```
### DataFrame
The following example creates a DataFrame with 100 rows and 4 columns populated with random data and then it sends it to SQL Server.
```python
import bcpy
import numpy as np
import pandas as pd
sql_config = {
'server': 'sql_server_hostname',
'database': 'database_name',
'username': 'test_user',
'password': 'test_user_password1234'
}
table_name = 'test_dataframe'
df = pd.DataFrame(np.random.randint(-100, 100, size=(100, 4)),
columns=list('ABCD'))
bdf = bcpy.DataFrame(df)
sql_table = bcpy.SqlTable(sql_config, table=table_name)
bdf.to_sql(sql_table)
```
## Requirements
You need a working version of Microsoft bcp installed in your system. Your PATH environment variable should contain the directory of the bcp utility. Following are the installation tutorials for different operating systems.
- [Dockerfile (Ubuntu 18.04)](./bcp.Dockerfile)
- [Linux](https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-tools)
- [Mac](https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-tools?view=sql-server-2017#macos)
- [Windows](https://docs.microsoft.com/en-us/sql/tools/bcp-utility)
%prep
%autosetup -n bcpy-0.1.8
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-bcpy -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.8-1
- Package Spec generated
|