summaryrefslogtreecommitdiff
path: root/python-bentoutils.spec
blob: df6417215deae7a14085b073ec8866a445e9e8f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
%global _empty_manifest_terminate_build 0
Name:		python-bentoutils
Version:	1.1.2
Release:	1
Summary:	Utilities for working with BentoML V1.x
License:	MIT License
URL:		https://github.com/markmo/bentoutils
Source0:	https://mirrors.aliyun.com/pypi/web/packages/c3/18/8230cb18ad7c2d3a929999e92ea987f91272e5387eac6bf41d551ed49c9c/bentoutils-1.1.2.tar.gz
BuildArch:	noarch

Requires:	python3-BentoML
Requires:	python3-boto3
Requires:	python3-click
Requires:	python3-kubernetes
Requires:	python3-PyYAML
Requires:	python3-stringcase
Requires:	python3-text-unidecode

%description
# bentoutils

## Contents

Console scripts for:

1. bentopack - package an existing pretrained model and save to the Model Registry

```
Usage: bentopack [OPTIONS]

Options:
  --module TEXT  fully qualified module name containing service to package
  --clz TEXT     class name of service to package
  --name TEXT    model name
  --path TEXT    directory path of pretrained model
  --help         Show this message and exit.
```

Example:
```
bentopack \
    --module TopicBentoService \        # python module containing service class
    --clz TopicBentoService \           # service class
    --name tm_train3_roberta_l_weigh \  # pretrained model name
    --path /srv/models/multilabel-topic # local path to pretrained model (excluding name)
```

2. deploy_to_knative - WIP


Uses Kaniko

kaniko is a tool to build container images from a Dockerfile, inside a container or Kubernetes cluster.

kaniko solves two problems with using the Docker-in-Docker build method:

* Docker-in-Docker requires privileged mode to function, which is a significant security concern.
* Docker-in-Docker generally incurs a performance penalty and can be quite slow.

The setting `--isdockerconfig` is required when using a private registry such as Harbor.

We can build a Docker image with kaniko and push it to Docker Hub or any other standard Docker registry.

To push to DockerHub or any other username and password Docker registries we need to mount the Docker config.json file that contains the credentials. Caching will not work for DockerHub as it does not support repositories with more than 2 path sections (acme/myimage/cache), but it will work in Artifactory and maybe other registry implementations.

    DOCKER_USERNAME=[...]
    DOCKER_PASSWORD=[...]
    AUTH=$(echo -n "${DOCKER_USERNAME}:${DOCKER_PASSWORD}" | base64)
    cat << EOF > config.json
    {
        "auths": {
            "https://index.docker.io/v1/": {
                "auth": "${AUTH}"
            }
        }
    }
    EOF

Alternatively, to create a secret to authenticate to Google Cloud Registry, follow these steps:

1. Create a service account in the Google Cloud Console project you want to push the final image to with Storage Admin permissions.
2. Download a JSON key for this service account
3. Rename the key to kaniko-secret.json
4. To create the secret, run:

    kubectl create secret generic kaniko-secret --from-file=<path to kaniko-secret.json>

Note: If using a GCS bucket in the same GCP project as a build context, this service account should now also have permissions to read from that bucket.

See https://github.com/GoogleContainerTools/kaniko





%package -n python3-bentoutils
Summary:	Utilities for working with BentoML V1.x
Provides:	python-bentoutils
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-bentoutils
# bentoutils

## Contents

Console scripts for:

1. bentopack - package an existing pretrained model and save to the Model Registry

```
Usage: bentopack [OPTIONS]

Options:
  --module TEXT  fully qualified module name containing service to package
  --clz TEXT     class name of service to package
  --name TEXT    model name
  --path TEXT    directory path of pretrained model
  --help         Show this message and exit.
```

Example:
```
bentopack \
    --module TopicBentoService \        # python module containing service class
    --clz TopicBentoService \           # service class
    --name tm_train3_roberta_l_weigh \  # pretrained model name
    --path /srv/models/multilabel-topic # local path to pretrained model (excluding name)
```

2. deploy_to_knative - WIP


Uses Kaniko

kaniko is a tool to build container images from a Dockerfile, inside a container or Kubernetes cluster.

kaniko solves two problems with using the Docker-in-Docker build method:

* Docker-in-Docker requires privileged mode to function, which is a significant security concern.
* Docker-in-Docker generally incurs a performance penalty and can be quite slow.

The setting `--isdockerconfig` is required when using a private registry such as Harbor.

We can build a Docker image with kaniko and push it to Docker Hub or any other standard Docker registry.

To push to DockerHub or any other username and password Docker registries we need to mount the Docker config.json file that contains the credentials. Caching will not work for DockerHub as it does not support repositories with more than 2 path sections (acme/myimage/cache), but it will work in Artifactory and maybe other registry implementations.

    DOCKER_USERNAME=[...]
    DOCKER_PASSWORD=[...]
    AUTH=$(echo -n "${DOCKER_USERNAME}:${DOCKER_PASSWORD}" | base64)
    cat << EOF > config.json
    {
        "auths": {
            "https://index.docker.io/v1/": {
                "auth": "${AUTH}"
            }
        }
    }
    EOF

Alternatively, to create a secret to authenticate to Google Cloud Registry, follow these steps:

1. Create a service account in the Google Cloud Console project you want to push the final image to with Storage Admin permissions.
2. Download a JSON key for this service account
3. Rename the key to kaniko-secret.json
4. To create the secret, run:

    kubectl create secret generic kaniko-secret --from-file=<path to kaniko-secret.json>

Note: If using a GCS bucket in the same GCP project as a build context, this service account should now also have permissions to read from that bucket.

See https://github.com/GoogleContainerTools/kaniko





%package help
Summary:	Development documents and examples for bentoutils
Provides:	python3-bentoutils-doc
%description help
# bentoutils

## Contents

Console scripts for:

1. bentopack - package an existing pretrained model and save to the Model Registry

```
Usage: bentopack [OPTIONS]

Options:
  --module TEXT  fully qualified module name containing service to package
  --clz TEXT     class name of service to package
  --name TEXT    model name
  --path TEXT    directory path of pretrained model
  --help         Show this message and exit.
```

Example:
```
bentopack \
    --module TopicBentoService \        # python module containing service class
    --clz TopicBentoService \           # service class
    --name tm_train3_roberta_l_weigh \  # pretrained model name
    --path /srv/models/multilabel-topic # local path to pretrained model (excluding name)
```

2. deploy_to_knative - WIP


Uses Kaniko

kaniko is a tool to build container images from a Dockerfile, inside a container or Kubernetes cluster.

kaniko solves two problems with using the Docker-in-Docker build method:

* Docker-in-Docker requires privileged mode to function, which is a significant security concern.
* Docker-in-Docker generally incurs a performance penalty and can be quite slow.

The setting `--isdockerconfig` is required when using a private registry such as Harbor.

We can build a Docker image with kaniko and push it to Docker Hub or any other standard Docker registry.

To push to DockerHub or any other username and password Docker registries we need to mount the Docker config.json file that contains the credentials. Caching will not work for DockerHub as it does not support repositories with more than 2 path sections (acme/myimage/cache), but it will work in Artifactory and maybe other registry implementations.

    DOCKER_USERNAME=[...]
    DOCKER_PASSWORD=[...]
    AUTH=$(echo -n "${DOCKER_USERNAME}:${DOCKER_PASSWORD}" | base64)
    cat << EOF > config.json
    {
        "auths": {
            "https://index.docker.io/v1/": {
                "auth": "${AUTH}"
            }
        }
    }
    EOF

Alternatively, to create a secret to authenticate to Google Cloud Registry, follow these steps:

1. Create a service account in the Google Cloud Console project you want to push the final image to with Storage Admin permissions.
2. Download a JSON key for this service account
3. Rename the key to kaniko-secret.json
4. To create the secret, run:

    kubectl create secret generic kaniko-secret --from-file=<path to kaniko-secret.json>

Note: If using a GCS bucket in the same GCP project as a build context, this service account should now also have permissions to read from that bucket.

See https://github.com/GoogleContainerTools/kaniko





%prep
%autosetup -n bentoutils-1.1.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-bentoutils -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.2-1
- Package Spec generated