summaryrefslogtreecommitdiff
path: root/python-bert-embedding.spec
blob: 36d8ada20177fe2cc0e36505e4469fe85bf243af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
%global _empty_manifest_terminate_build 0
Name:		python-bert-embedding
Version:	1.0.1
Release:	1
Summary:	BERT token level embedding with MxNet
License:	ALv2
URL:		https://github.com/imgarylai/bert_embedding
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/32/49/13f76cef121677994bb1b0e8baa8b8bf88405eb1be554925fe8682b7b71e/bert_embedding-1.0.1.tar.gz
BuildArch:	noarch

Requires:	python3-typing
Requires:	python3-numpy
Requires:	python3-mxnet
Requires:	python3-gluonnlp
Requires:	python3-mxnet-cu92

%description
# Bert Embeddings

[![Build Status](https://travis-ci.org/imgarylai/bert-embedding.svg?branch=master)](https://travis-ci.org/imgarylai/bert-embedding) [![codecov](https://codecov.io/gh/imgarylai/bert-embedding/branch/master/graph/badge.svg)](https://codecov.io/gh/imgarylai/bert-embedding) [![PyPI version](https://badge.fury.io/py/bert-embedding.svg)](https://pypi.org/project/bert-embedding/) [![Documentation Status](https://readthedocs.org/projects/bert-embedding/badge/?version=latest)](https://bert-embedding.readthedocs.io/en/latest/?badge=latest) 


[BERT](https://arxiv.org/abs/1810.04805), published by [Google](https://github.com/google-research/bert), is new way to obtain pre-trained language model word representation. Many NLP tasks are benefit from BERT to get the SOTA.

The goal of this project is to obtain the token embedding from BERT's pre-trained model. In this way, instead of building and do fine-tuning for an end-to-end NLP model, you can build your model by just utilizing or token embedding.

This project is implemented with [@MXNet](https://github.com/apache/incubator-mxnet). Special thanks to [@gluon-nlp](https://github.com/dmlc/gluon-nlp) team.

## Install

```
pip install bert-embedding
# If you want to run on GPU machine, please install `mxnet-cu92`.
pip install mxnet-cu92
```

## Usage

```python
from bert_embedding import BertEmbedding

bert_abstract = """We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers.
 Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers.
 As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. 
BERT is conceptually simple and empirically powerful. 
It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%."""
sentences = bert_abstract.split('\n')
bert_embedding = BertEmbedding()
result = bert_embedding(sentences)
```
If you want to use GPU, please import mxnet and set context

```python
import mxnet as mx
from bert_embedding import BertEmbedding

...

ctx = mx.gpu(0)
bert = BertEmbedding(ctx=ctx)
```

This result is a list of a tuple containing (tokens, tokens embedding)

For example:

```python
first_sentence = result[0]

first_sentence[0]
# ['we', 'introduce', 'a', 'new', 'language', 'representation', 'model', 'called', 'bert', ',', 'which', 'stands', 'for', 'bidirectional', 'encoder', 'representations', 'from', 'transformers']
len(first_sentence[0])
# 18


len(first_sentence[1])
# 18
first_token_in_first_sentence = first_sentence[1]
first_token_in_first_sentence[1]
# array([ 0.4805648 ,  0.18369392, -0.28554988, ..., -0.01961522,
#        1.0207764 , -0.67167974], dtype=float32)
first_token_in_first_sentence[1].shape
# (768,)
```

## OOV

There are three ways to handle oov, avg (default), sum, and last. This can be specified in encoding. 

```python
...
bert_embedding = BertEmbedding()
bert_embedding(sentences, 'sum')
...
```

## Available pre-trained BERT models

| |book_corpus_wiki_en_uncased|book_corpus_wiki_en_cased|wiki_multilingual|wiki_multilingual_cased|wiki_cn|
|---|---|---|---|---|---|
|bert_12_768_12|✓|✓|✓|✓|✓|
|bert_24_1024_16|x|✓|x|x|x|

Example of using the large pre-trained BERT model from Google 

```python
from bert_embedding import BertEmbedding

bert_embedding = BertEmbedding(model='bert_24_1024_16', dataset_name='book_corpus_wiki_en_cased')
```

Source: [gluonnlp](http://gluon-nlp.mxnet.io/model_zoo/bert/index.html) 



%package -n python3-bert-embedding
Summary:	BERT token level embedding with MxNet
Provides:	python-bert-embedding
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-bert-embedding
# Bert Embeddings

[![Build Status](https://travis-ci.org/imgarylai/bert-embedding.svg?branch=master)](https://travis-ci.org/imgarylai/bert-embedding) [![codecov](https://codecov.io/gh/imgarylai/bert-embedding/branch/master/graph/badge.svg)](https://codecov.io/gh/imgarylai/bert-embedding) [![PyPI version](https://badge.fury.io/py/bert-embedding.svg)](https://pypi.org/project/bert-embedding/) [![Documentation Status](https://readthedocs.org/projects/bert-embedding/badge/?version=latest)](https://bert-embedding.readthedocs.io/en/latest/?badge=latest) 


[BERT](https://arxiv.org/abs/1810.04805), published by [Google](https://github.com/google-research/bert), is new way to obtain pre-trained language model word representation. Many NLP tasks are benefit from BERT to get the SOTA.

The goal of this project is to obtain the token embedding from BERT's pre-trained model. In this way, instead of building and do fine-tuning for an end-to-end NLP model, you can build your model by just utilizing or token embedding.

This project is implemented with [@MXNet](https://github.com/apache/incubator-mxnet). Special thanks to [@gluon-nlp](https://github.com/dmlc/gluon-nlp) team.

## Install

```
pip install bert-embedding
# If you want to run on GPU machine, please install `mxnet-cu92`.
pip install mxnet-cu92
```

## Usage

```python
from bert_embedding import BertEmbedding

bert_abstract = """We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers.
 Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers.
 As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. 
BERT is conceptually simple and empirically powerful. 
It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%."""
sentences = bert_abstract.split('\n')
bert_embedding = BertEmbedding()
result = bert_embedding(sentences)
```
If you want to use GPU, please import mxnet and set context

```python
import mxnet as mx
from bert_embedding import BertEmbedding

...

ctx = mx.gpu(0)
bert = BertEmbedding(ctx=ctx)
```

This result is a list of a tuple containing (tokens, tokens embedding)

For example:

```python
first_sentence = result[0]

first_sentence[0]
# ['we', 'introduce', 'a', 'new', 'language', 'representation', 'model', 'called', 'bert', ',', 'which', 'stands', 'for', 'bidirectional', 'encoder', 'representations', 'from', 'transformers']
len(first_sentence[0])
# 18


len(first_sentence[1])
# 18
first_token_in_first_sentence = first_sentence[1]
first_token_in_first_sentence[1]
# array([ 0.4805648 ,  0.18369392, -0.28554988, ..., -0.01961522,
#        1.0207764 , -0.67167974], dtype=float32)
first_token_in_first_sentence[1].shape
# (768,)
```

## OOV

There are three ways to handle oov, avg (default), sum, and last. This can be specified in encoding. 

```python
...
bert_embedding = BertEmbedding()
bert_embedding(sentences, 'sum')
...
```

## Available pre-trained BERT models

| |book_corpus_wiki_en_uncased|book_corpus_wiki_en_cased|wiki_multilingual|wiki_multilingual_cased|wiki_cn|
|---|---|---|---|---|---|
|bert_12_768_12|✓|✓|✓|✓|✓|
|bert_24_1024_16|x|✓|x|x|x|

Example of using the large pre-trained BERT model from Google 

```python
from bert_embedding import BertEmbedding

bert_embedding = BertEmbedding(model='bert_24_1024_16', dataset_name='book_corpus_wiki_en_cased')
```

Source: [gluonnlp](http://gluon-nlp.mxnet.io/model_zoo/bert/index.html) 



%package help
Summary:	Development documents and examples for bert-embedding
Provides:	python3-bert-embedding-doc
%description help
# Bert Embeddings

[![Build Status](https://travis-ci.org/imgarylai/bert-embedding.svg?branch=master)](https://travis-ci.org/imgarylai/bert-embedding) [![codecov](https://codecov.io/gh/imgarylai/bert-embedding/branch/master/graph/badge.svg)](https://codecov.io/gh/imgarylai/bert-embedding) [![PyPI version](https://badge.fury.io/py/bert-embedding.svg)](https://pypi.org/project/bert-embedding/) [![Documentation Status](https://readthedocs.org/projects/bert-embedding/badge/?version=latest)](https://bert-embedding.readthedocs.io/en/latest/?badge=latest) 


[BERT](https://arxiv.org/abs/1810.04805), published by [Google](https://github.com/google-research/bert), is new way to obtain pre-trained language model word representation. Many NLP tasks are benefit from BERT to get the SOTA.

The goal of this project is to obtain the token embedding from BERT's pre-trained model. In this way, instead of building and do fine-tuning for an end-to-end NLP model, you can build your model by just utilizing or token embedding.

This project is implemented with [@MXNet](https://github.com/apache/incubator-mxnet). Special thanks to [@gluon-nlp](https://github.com/dmlc/gluon-nlp) team.

## Install

```
pip install bert-embedding
# If you want to run on GPU machine, please install `mxnet-cu92`.
pip install mxnet-cu92
```

## Usage

```python
from bert_embedding import BertEmbedding

bert_abstract = """We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers.
 Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers.
 As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. 
BERT is conceptually simple and empirically powerful. 
It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%."""
sentences = bert_abstract.split('\n')
bert_embedding = BertEmbedding()
result = bert_embedding(sentences)
```
If you want to use GPU, please import mxnet and set context

```python
import mxnet as mx
from bert_embedding import BertEmbedding

...

ctx = mx.gpu(0)
bert = BertEmbedding(ctx=ctx)
```

This result is a list of a tuple containing (tokens, tokens embedding)

For example:

```python
first_sentence = result[0]

first_sentence[0]
# ['we', 'introduce', 'a', 'new', 'language', 'representation', 'model', 'called', 'bert', ',', 'which', 'stands', 'for', 'bidirectional', 'encoder', 'representations', 'from', 'transformers']
len(first_sentence[0])
# 18


len(first_sentence[1])
# 18
first_token_in_first_sentence = first_sentence[1]
first_token_in_first_sentence[1]
# array([ 0.4805648 ,  0.18369392, -0.28554988, ..., -0.01961522,
#        1.0207764 , -0.67167974], dtype=float32)
first_token_in_first_sentence[1].shape
# (768,)
```

## OOV

There are three ways to handle oov, avg (default), sum, and last. This can be specified in encoding. 

```python
...
bert_embedding = BertEmbedding()
bert_embedding(sentences, 'sum')
...
```

## Available pre-trained BERT models

| |book_corpus_wiki_en_uncased|book_corpus_wiki_en_cased|wiki_multilingual|wiki_multilingual_cased|wiki_cn|
|---|---|---|---|---|---|
|bert_12_768_12|✓|✓|✓|✓|✓|
|bert_24_1024_16|x|✓|x|x|x|

Example of using the large pre-trained BERT model from Google 

```python
from bert_embedding import BertEmbedding

bert_embedding = BertEmbedding(model='bert_24_1024_16', dataset_name='book_corpus_wiki_en_cased')
```

Source: [gluonnlp](http://gluon-nlp.mxnet.io/model_zoo/bert/index.html) 



%prep
%autosetup -n bert-embedding-1.0.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-bert-embedding -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.1-1
- Package Spec generated