diff options
author | CoprDistGit <infra@openeuler.org> | 2023-05-10 06:34:17 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-05-10 06:34:17 +0000 |
commit | 2a6020530af99832387aaaedf6ea28803863412d (patch) | |
tree | 6a9343f1038659f1a8652c6cb12a74bb097b72de /python-bert-multitask-learning.spec | |
parent | b92ee3436b00dd02a04fbf14cee6b3115d525e03 (diff) |
automatic import of python-bert-multitask-learning
Diffstat (limited to 'python-bert-multitask-learning.spec')
-rw-r--r-- | python-bert-multitask-learning.spec | 364 |
1 files changed, 364 insertions, 0 deletions
diff --git a/python-bert-multitask-learning.spec b/python-bert-multitask-learning.spec new file mode 100644 index 0000000..af42038 --- /dev/null +++ b/python-bert-multitask-learning.spec @@ -0,0 +1,364 @@ +%global _empty_manifest_terminate_build 0 +Name: python-bert-multitask-learning +Version: 0.7.0 +Release: 1 +Summary: BERT for Multi-task Learning +License: MIT +URL: https://github.com/JayYip/bert-multitask-learning +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/55/9d/12581fd57c88e19308746a67f1d76f6356c91cbcbd1d123ec346c4e35620/bert_multitask_learning-0.7.0.tar.gz +BuildArch: noarch + +Requires: python3-numpy +Requires: python3-joblib +Requires: python3-tqdm +Requires: python3-six +Requires: python3-pandas +Requires: python3-setuptools +Requires: python3-nltk +Requires: python3-scikit-learn +Requires: python3-transformers +Requires: python3-tensorflow-addons + +%description +# Bert for Multi-task Learning + + + +[python](https://img.shields.io/badge/python%20-3.6.0-brightgreen.svg) [](https://www.tensorflow.org/) [](https://pypi.python.org/pypi/bert-multitask-learning/) [](https://pypi.python.org/pypi/bert-multitask-learning/) + +[中文文档](#Bert多任务学习) + +**Note: Since 0.4.0, tf version >= 2.1 is required.** + +## Install + +``` +pip install bert-multitask-learning +``` + +## What is it + +This a project that uses transformers(based on huggingface transformers) to do **multi-modal multi-task learning**. + +## Why do I need this + +In the original BERT code, neither multi-task learning or multiple GPU training is possible. Plus, the original purpose of this project is NER which dose not have a working script in the original BERT code. + +To sum up, compared to the original bert repo, this repo has the following features: + +1. Multimodal multi-task learning(major reason of re-writing the majority of code). +2. Multiple GPU training +3. Support sequence labeling (for example, NER) and Encoder-Decoder Seq2Seq(with transformer decoder). + +## What type of problems are supported? + +- Masked LM and next sentence prediction Pre-train(pretrain) +- Classification(cls) +- Sequence Labeling(seq_tag) +- Multi-Label Classification(multi_cls) +- Multi-modal Mask LM(mask_lm) + +## How to run pre-defined problems + +There are two types of chaining operations can be used to chain problems. + +- `&`. If two problems have the same inputs, they can be chained using `&`. Problems chained by `&` will be trained at the same time. +- `|`. If two problems don't have the same inputs, they need to be chained using `|`. Problems chained by `|` will be sampled to train at every instance. + +For example, `cws|NER|weibo_ner&weibo_cws`, one problem will be sampled at each turn, say `weibo_ner&weibo_cws`, then `weibo_ner` and `weibo_cws` will trained for this turn together. Therefore, in a particular batch, some tasks might not be sampled, and their loss could be 0 in this batch. + +Please see the examples in [notebooks](notebooks/) for more details about training, evaluation and export models. + + +# Bert多任务学习 + +**注意:版本0.4.0后要求tf>=2.1** + +## 安装 + +``` +pip install bert-multitask-learning +``` + +## 这是什么 + +这是利用transformer(基于huggingface transformers)进行**多模态多任务学习**的项目. + +## 我为什么需要这个项目 + +在原始的BERT代码中, 是没有办法直接用多GPU进行多任务学习的. 另外, BERT并没有给出序列标注和Seq2seq的训练代码. + +因此, 和原来的BERT相比, 这个项目具有以下特点: + +1. 多任务学习 +2. 多GPU训练 +3. 序列标注以及Encoder-decoder seq2seq的支持(用transformer decoder) + +## 目前支持的任务类型 + +- Masked LM和next sentence prediction预训练(pretrain) +- 单标签分类(cls) +- 序列标注(seq_tag) +- 多标签分类(multi_cls) +- 多模态Mask LM(mask_lm) + +## 如何运行预定义任务 + +可以用两种方法来将多个任务连接起来. + +- `&`. 如果两个任务有相同的输入, 不同标签的话, 那么他们**可以**用`&`来连接. 被`&`连接起来的任务会被同时训练. +- `|`. 如果两个任务为不同的输入, 那么他们**必须**用`|`来连接. 被`|`连接起来的任务会被随机抽取来训练. + +例如, 我们定义任务`cws|NER|weibo_ner&weibo_cws`, 那么在生成每一条数据时, 一个任务块会被随机抽取出来, 例如在这一次抽样中, `weibo_ner&weibo_cws`被选中. 那么这次`weibo_ner`和`weibo_cws`会被同时训练. 因此, 在一个batch中, 有可能某些任务没有被抽中, loss为0. + +训练, eval和导出模型请见[notebooks](notebooks/) + + + + +%package -n python3-bert-multitask-learning +Summary: BERT for Multi-task Learning +Provides: python-bert-multitask-learning +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-bert-multitask-learning +# Bert for Multi-task Learning + + + +[python](https://img.shields.io/badge/python%20-3.6.0-brightgreen.svg) [](https://www.tensorflow.org/) [](https://pypi.python.org/pypi/bert-multitask-learning/) [](https://pypi.python.org/pypi/bert-multitask-learning/) + +[中文文档](#Bert多任务学习) + +**Note: Since 0.4.0, tf version >= 2.1 is required.** + +## Install + +``` +pip install bert-multitask-learning +``` + +## What is it + +This a project that uses transformers(based on huggingface transformers) to do **multi-modal multi-task learning**. + +## Why do I need this + +In the original BERT code, neither multi-task learning or multiple GPU training is possible. Plus, the original purpose of this project is NER which dose not have a working script in the original BERT code. + +To sum up, compared to the original bert repo, this repo has the following features: + +1. Multimodal multi-task learning(major reason of re-writing the majority of code). +2. Multiple GPU training +3. Support sequence labeling (for example, NER) and Encoder-Decoder Seq2Seq(with transformer decoder). + +## What type of problems are supported? + +- Masked LM and next sentence prediction Pre-train(pretrain) +- Classification(cls) +- Sequence Labeling(seq_tag) +- Multi-Label Classification(multi_cls) +- Multi-modal Mask LM(mask_lm) + +## How to run pre-defined problems + +There are two types of chaining operations can be used to chain problems. + +- `&`. If two problems have the same inputs, they can be chained using `&`. Problems chained by `&` will be trained at the same time. +- `|`. If two problems don't have the same inputs, they need to be chained using `|`. Problems chained by `|` will be sampled to train at every instance. + +For example, `cws|NER|weibo_ner&weibo_cws`, one problem will be sampled at each turn, say `weibo_ner&weibo_cws`, then `weibo_ner` and `weibo_cws` will trained for this turn together. Therefore, in a particular batch, some tasks might not be sampled, and their loss could be 0 in this batch. + +Please see the examples in [notebooks](notebooks/) for more details about training, evaluation and export models. + + +# Bert多任务学习 + +**注意:版本0.4.0后要求tf>=2.1** + +## 安装 + +``` +pip install bert-multitask-learning +``` + +## 这是什么 + +这是利用transformer(基于huggingface transformers)进行**多模态多任务学习**的项目. + +## 我为什么需要这个项目 + +在原始的BERT代码中, 是没有办法直接用多GPU进行多任务学习的. 另外, BERT并没有给出序列标注和Seq2seq的训练代码. + +因此, 和原来的BERT相比, 这个项目具有以下特点: + +1. 多任务学习 +2. 多GPU训练 +3. 序列标注以及Encoder-decoder seq2seq的支持(用transformer decoder) + +## 目前支持的任务类型 + +- Masked LM和next sentence prediction预训练(pretrain) +- 单标签分类(cls) +- 序列标注(seq_tag) +- 多标签分类(multi_cls) +- 多模态Mask LM(mask_lm) + +## 如何运行预定义任务 + +可以用两种方法来将多个任务连接起来. + +- `&`. 如果两个任务有相同的输入, 不同标签的话, 那么他们**可以**用`&`来连接. 被`&`连接起来的任务会被同时训练. +- `|`. 如果两个任务为不同的输入, 那么他们**必须**用`|`来连接. 被`|`连接起来的任务会被随机抽取来训练. + +例如, 我们定义任务`cws|NER|weibo_ner&weibo_cws`, 那么在生成每一条数据时, 一个任务块会被随机抽取出来, 例如在这一次抽样中, `weibo_ner&weibo_cws`被选中. 那么这次`weibo_ner`和`weibo_cws`会被同时训练. 因此, 在一个batch中, 有可能某些任务没有被抽中, loss为0. + +训练, eval和导出模型请见[notebooks](notebooks/) + + + + +%package help +Summary: Development documents and examples for bert-multitask-learning +Provides: python3-bert-multitask-learning-doc +%description help +# Bert for Multi-task Learning + + + +[python](https://img.shields.io/badge/python%20-3.6.0-brightgreen.svg) [](https://www.tensorflow.org/) [](https://pypi.python.org/pypi/bert-multitask-learning/) [](https://pypi.python.org/pypi/bert-multitask-learning/) + +[中文文档](#Bert多任务学习) + +**Note: Since 0.4.0, tf version >= 2.1 is required.** + +## Install + +``` +pip install bert-multitask-learning +``` + +## What is it + +This a project that uses transformers(based on huggingface transformers) to do **multi-modal multi-task learning**. + +## Why do I need this + +In the original BERT code, neither multi-task learning or multiple GPU training is possible. Plus, the original purpose of this project is NER which dose not have a working script in the original BERT code. + +To sum up, compared to the original bert repo, this repo has the following features: + +1. Multimodal multi-task learning(major reason of re-writing the majority of code). +2. Multiple GPU training +3. Support sequence labeling (for example, NER) and Encoder-Decoder Seq2Seq(with transformer decoder). + +## What type of problems are supported? + +- Masked LM and next sentence prediction Pre-train(pretrain) +- Classification(cls) +- Sequence Labeling(seq_tag) +- Multi-Label Classification(multi_cls) +- Multi-modal Mask LM(mask_lm) + +## How to run pre-defined problems + +There are two types of chaining operations can be used to chain problems. + +- `&`. If two problems have the same inputs, they can be chained using `&`. Problems chained by `&` will be trained at the same time. +- `|`. If two problems don't have the same inputs, they need to be chained using `|`. Problems chained by `|` will be sampled to train at every instance. + +For example, `cws|NER|weibo_ner&weibo_cws`, one problem will be sampled at each turn, say `weibo_ner&weibo_cws`, then `weibo_ner` and `weibo_cws` will trained for this turn together. Therefore, in a particular batch, some tasks might not be sampled, and their loss could be 0 in this batch. + +Please see the examples in [notebooks](notebooks/) for more details about training, evaluation and export models. + + +# Bert多任务学习 + +**注意:版本0.4.0后要求tf>=2.1** + +## 安装 + +``` +pip install bert-multitask-learning +``` + +## 这是什么 + +这是利用transformer(基于huggingface transformers)进行**多模态多任务学习**的项目. + +## 我为什么需要这个项目 + +在原始的BERT代码中, 是没有办法直接用多GPU进行多任务学习的. 另外, BERT并没有给出序列标注和Seq2seq的训练代码. + +因此, 和原来的BERT相比, 这个项目具有以下特点: + +1. 多任务学习 +2. 多GPU训练 +3. 序列标注以及Encoder-decoder seq2seq的支持(用transformer decoder) + +## 目前支持的任务类型 + +- Masked LM和next sentence prediction预训练(pretrain) +- 单标签分类(cls) +- 序列标注(seq_tag) +- 多标签分类(multi_cls) +- 多模态Mask LM(mask_lm) + +## 如何运行预定义任务 + +可以用两种方法来将多个任务连接起来. + +- `&`. 如果两个任务有相同的输入, 不同标签的话, 那么他们**可以**用`&`来连接. 被`&`连接起来的任务会被同时训练. +- `|`. 如果两个任务为不同的输入, 那么他们**必须**用`|`来连接. 被`|`连接起来的任务会被随机抽取来训练. + +例如, 我们定义任务`cws|NER|weibo_ner&weibo_cws`, 那么在生成每一条数据时, 一个任务块会被随机抽取出来, 例如在这一次抽样中, `weibo_ner&weibo_cws`被选中. 那么这次`weibo_ner`和`weibo_cws`会被同时训练. 因此, 在一个batch中, 有可能某些任务没有被抽中, loss为0. + +训练, eval和导出模型请见[notebooks](notebooks/) + + + + +%prep +%autosetup -n bert-multitask-learning-0.7.0 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-bert-multitask-learning -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.7.0-1 +- Package Spec generated |