1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
%global _empty_manifest_terminate_build 0
Name: python-bert-multitask-learning
Version: 0.7.0
Release: 1
Summary: BERT for Multi-task Learning
License: MIT
URL: https://github.com/JayYip/bert-multitask-learning
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/55/9d/12581fd57c88e19308746a67f1d76f6356c91cbcbd1d123ec346c4e35620/bert_multitask_learning-0.7.0.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-joblib
Requires: python3-tqdm
Requires: python3-six
Requires: python3-pandas
Requires: python3-setuptools
Requires: python3-nltk
Requires: python3-scikit-learn
Requires: python3-transformers
Requires: python3-tensorflow-addons
%description
# Bert for Multi-task Learning
[python](https://img.shields.io/badge/python%20-3.6.0-brightgreen.svg) [](https://www.tensorflow.org/) [](https://pypi.python.org/pypi/bert-multitask-learning/) [](https://pypi.python.org/pypi/bert-multitask-learning/)
[中文文档](#Bert多任务学习)
**Note: Since 0.4.0, tf version >= 2.1 is required.**
## Install
```
pip install bert-multitask-learning
```
## What is it
This a project that uses transformers(based on huggingface transformers) to do **multi-modal multi-task learning**.
## Why do I need this
In the original BERT code, neither multi-task learning or multiple GPU training is possible. Plus, the original purpose of this project is NER which dose not have a working script in the original BERT code.
To sum up, compared to the original bert repo, this repo has the following features:
1. Multimodal multi-task learning(major reason of re-writing the majority of code).
2. Multiple GPU training
3. Support sequence labeling (for example, NER) and Encoder-Decoder Seq2Seq(with transformer decoder).
## What type of problems are supported?
- Masked LM and next sentence prediction Pre-train(pretrain)
- Classification(cls)
- Sequence Labeling(seq_tag)
- Multi-Label Classification(multi_cls)
- Multi-modal Mask LM(mask_lm)
## How to run pre-defined problems
There are two types of chaining operations can be used to chain problems.
- `&`. If two problems have the same inputs, they can be chained using `&`. Problems chained by `&` will be trained at the same time.
- `|`. If two problems don't have the same inputs, they need to be chained using `|`. Problems chained by `|` will be sampled to train at every instance.
For example, `cws|NER|weibo_ner&weibo_cws`, one problem will be sampled at each turn, say `weibo_ner&weibo_cws`, then `weibo_ner` and `weibo_cws` will trained for this turn together. Therefore, in a particular batch, some tasks might not be sampled, and their loss could be 0 in this batch.
Please see the examples in [notebooks](notebooks/) for more details about training, evaluation and export models.
# Bert多任务学习
**注意:版本0.4.0后要求tf>=2.1**
## 安装
```
pip install bert-multitask-learning
```
## 这是什么
这是利用transformer(基于huggingface transformers)进行**多模态多任务学习**的项目.
## 我为什么需要这个项目
在原始的BERT代码中, 是没有办法直接用多GPU进行多任务学习的. 另外, BERT并没有给出序列标注和Seq2seq的训练代码.
因此, 和原来的BERT相比, 这个项目具有以下特点:
1. 多任务学习
2. 多GPU训练
3. 序列标注以及Encoder-decoder seq2seq的支持(用transformer decoder)
## 目前支持的任务类型
- Masked LM和next sentence prediction预训练(pretrain)
- 单标签分类(cls)
- 序列标注(seq_tag)
- 多标签分类(multi_cls)
- 多模态Mask LM(mask_lm)
## 如何运行预定义任务
可以用两种方法来将多个任务连接起来.
- `&`. 如果两个任务有相同的输入, 不同标签的话, 那么他们**可以**用`&`来连接. 被`&`连接起来的任务会被同时训练.
- `|`. 如果两个任务为不同的输入, 那么他们**必须**用`|`来连接. 被`|`连接起来的任务会被随机抽取来训练.
例如, 我们定义任务`cws|NER|weibo_ner&weibo_cws`, 那么在生成每一条数据时, 一个任务块会被随机抽取出来, 例如在这一次抽样中, `weibo_ner&weibo_cws`被选中. 那么这次`weibo_ner`和`weibo_cws`会被同时训练. 因此, 在一个batch中, 有可能某些任务没有被抽中, loss为0.
训练, eval和导出模型请见[notebooks](notebooks/)
%package -n python3-bert-multitask-learning
Summary: BERT for Multi-task Learning
Provides: python-bert-multitask-learning
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-bert-multitask-learning
# Bert for Multi-task Learning
[python](https://img.shields.io/badge/python%20-3.6.0-brightgreen.svg) [](https://www.tensorflow.org/) [](https://pypi.python.org/pypi/bert-multitask-learning/) [](https://pypi.python.org/pypi/bert-multitask-learning/)
[中文文档](#Bert多任务学习)
**Note: Since 0.4.0, tf version >= 2.1 is required.**
## Install
```
pip install bert-multitask-learning
```
## What is it
This a project that uses transformers(based on huggingface transformers) to do **multi-modal multi-task learning**.
## Why do I need this
In the original BERT code, neither multi-task learning or multiple GPU training is possible. Plus, the original purpose of this project is NER which dose not have a working script in the original BERT code.
To sum up, compared to the original bert repo, this repo has the following features:
1. Multimodal multi-task learning(major reason of re-writing the majority of code).
2. Multiple GPU training
3. Support sequence labeling (for example, NER) and Encoder-Decoder Seq2Seq(with transformer decoder).
## What type of problems are supported?
- Masked LM and next sentence prediction Pre-train(pretrain)
- Classification(cls)
- Sequence Labeling(seq_tag)
- Multi-Label Classification(multi_cls)
- Multi-modal Mask LM(mask_lm)
## How to run pre-defined problems
There are two types of chaining operations can be used to chain problems.
- `&`. If two problems have the same inputs, they can be chained using `&`. Problems chained by `&` will be trained at the same time.
- `|`. If two problems don't have the same inputs, they need to be chained using `|`. Problems chained by `|` will be sampled to train at every instance.
For example, `cws|NER|weibo_ner&weibo_cws`, one problem will be sampled at each turn, say `weibo_ner&weibo_cws`, then `weibo_ner` and `weibo_cws` will trained for this turn together. Therefore, in a particular batch, some tasks might not be sampled, and their loss could be 0 in this batch.
Please see the examples in [notebooks](notebooks/) for more details about training, evaluation and export models.
# Bert多任务学习
**注意:版本0.4.0后要求tf>=2.1**
## 安装
```
pip install bert-multitask-learning
```
## 这是什么
这是利用transformer(基于huggingface transformers)进行**多模态多任务学习**的项目.
## 我为什么需要这个项目
在原始的BERT代码中, 是没有办法直接用多GPU进行多任务学习的. 另外, BERT并没有给出序列标注和Seq2seq的训练代码.
因此, 和原来的BERT相比, 这个项目具有以下特点:
1. 多任务学习
2. 多GPU训练
3. 序列标注以及Encoder-decoder seq2seq的支持(用transformer decoder)
## 目前支持的任务类型
- Masked LM和next sentence prediction预训练(pretrain)
- 单标签分类(cls)
- 序列标注(seq_tag)
- 多标签分类(multi_cls)
- 多模态Mask LM(mask_lm)
## 如何运行预定义任务
可以用两种方法来将多个任务连接起来.
- `&`. 如果两个任务有相同的输入, 不同标签的话, 那么他们**可以**用`&`来连接. 被`&`连接起来的任务会被同时训练.
- `|`. 如果两个任务为不同的输入, 那么他们**必须**用`|`来连接. 被`|`连接起来的任务会被随机抽取来训练.
例如, 我们定义任务`cws|NER|weibo_ner&weibo_cws`, 那么在生成每一条数据时, 一个任务块会被随机抽取出来, 例如在这一次抽样中, `weibo_ner&weibo_cws`被选中. 那么这次`weibo_ner`和`weibo_cws`会被同时训练. 因此, 在一个batch中, 有可能某些任务没有被抽中, loss为0.
训练, eval和导出模型请见[notebooks](notebooks/)
%package help
Summary: Development documents and examples for bert-multitask-learning
Provides: python3-bert-multitask-learning-doc
%description help
# Bert for Multi-task Learning
[python](https://img.shields.io/badge/python%20-3.6.0-brightgreen.svg) [](https://www.tensorflow.org/) [](https://pypi.python.org/pypi/bert-multitask-learning/) [](https://pypi.python.org/pypi/bert-multitask-learning/)
[中文文档](#Bert多任务学习)
**Note: Since 0.4.0, tf version >= 2.1 is required.**
## Install
```
pip install bert-multitask-learning
```
## What is it
This a project that uses transformers(based on huggingface transformers) to do **multi-modal multi-task learning**.
## Why do I need this
In the original BERT code, neither multi-task learning or multiple GPU training is possible. Plus, the original purpose of this project is NER which dose not have a working script in the original BERT code.
To sum up, compared to the original bert repo, this repo has the following features:
1. Multimodal multi-task learning(major reason of re-writing the majority of code).
2. Multiple GPU training
3. Support sequence labeling (for example, NER) and Encoder-Decoder Seq2Seq(with transformer decoder).
## What type of problems are supported?
- Masked LM and next sentence prediction Pre-train(pretrain)
- Classification(cls)
- Sequence Labeling(seq_tag)
- Multi-Label Classification(multi_cls)
- Multi-modal Mask LM(mask_lm)
## How to run pre-defined problems
There are two types of chaining operations can be used to chain problems.
- `&`. If two problems have the same inputs, they can be chained using `&`. Problems chained by `&` will be trained at the same time.
- `|`. If two problems don't have the same inputs, they need to be chained using `|`. Problems chained by `|` will be sampled to train at every instance.
For example, `cws|NER|weibo_ner&weibo_cws`, one problem will be sampled at each turn, say `weibo_ner&weibo_cws`, then `weibo_ner` and `weibo_cws` will trained for this turn together. Therefore, in a particular batch, some tasks might not be sampled, and their loss could be 0 in this batch.
Please see the examples in [notebooks](notebooks/) for more details about training, evaluation and export models.
# Bert多任务学习
**注意:版本0.4.0后要求tf>=2.1**
## 安装
```
pip install bert-multitask-learning
```
## 这是什么
这是利用transformer(基于huggingface transformers)进行**多模态多任务学习**的项目.
## 我为什么需要这个项目
在原始的BERT代码中, 是没有办法直接用多GPU进行多任务学习的. 另外, BERT并没有给出序列标注和Seq2seq的训练代码.
因此, 和原来的BERT相比, 这个项目具有以下特点:
1. 多任务学习
2. 多GPU训练
3. 序列标注以及Encoder-decoder seq2seq的支持(用transformer decoder)
## 目前支持的任务类型
- Masked LM和next sentence prediction预训练(pretrain)
- 单标签分类(cls)
- 序列标注(seq_tag)
- 多标签分类(multi_cls)
- 多模态Mask LM(mask_lm)
## 如何运行预定义任务
可以用两种方法来将多个任务连接起来.
- `&`. 如果两个任务有相同的输入, 不同标签的话, 那么他们**可以**用`&`来连接. 被`&`连接起来的任务会被同时训练.
- `|`. 如果两个任务为不同的输入, 那么他们**必须**用`|`来连接. 被`|`连接起来的任务会被随机抽取来训练.
例如, 我们定义任务`cws|NER|weibo_ner&weibo_cws`, 那么在生成每一条数据时, 一个任务块会被随机抽取出来, 例如在这一次抽样中, `weibo_ner&weibo_cws`被选中. 那么这次`weibo_ner`和`weibo_cws`会被同时训练. 因此, 在一个batch中, 有可能某些任务没有被抽中, loss为0.
训练, eval和导出模型请见[notebooks](notebooks/)
%prep
%autosetup -n bert-multitask-learning-0.7.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-bert-multitask-learning -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.7.0-1
- Package Spec generated
|