summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-bertstem.spec310
-rw-r--r--sources1
3 files changed, 312 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..38f275f 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/bertstem-0.0.33.tar.gz
diff --git a/python-bertstem.spec b/python-bertstem.spec
new file mode 100644
index 0000000..4f1ceca
--- /dev/null
+++ b/python-bertstem.spec
@@ -0,0 +1,310 @@
+%global _empty_manifest_terminate_build 0
+Name: python-bertstem
+Version: 0.0.33
+Release: 1
+Summary: BERT model fine-tuned on chilean STEM lessons
+License: MIT License
+URL: https://github.com/pabloveazul/BERT-STEM
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/e1/44/85fa556d35d908304190dcf2fc5249f07f25d3d48570ce7fdf6529c29b36/bertstem-0.0.33.tar.gz
+BuildArch: noarch
+
+Requires: python3-torch
+Requires: python3-pandas
+Requires: python3-numpy
+Requires: python3-transformers
+
+%description
+# BERT-STEM
+
+BERT model fine-tuned on Science Technology Engineering and Mathematics (STEM) lessons.
+
+## Install:
+
+To install from pip:
+
+```
+pip install bertstem
+```
+
+## Quickstart
+
+To encode sentences :
+
+```python
+from BERT_STEM.BertSTEM import *
+bert = BertSTEM()
+
+# Example dataframe with text in spanish
+data = {'col_1': [3, 2, 1],
+'col_2': ['hola como estan', 'alumnos queridos', 'vamos a hablar de matematicas']}
+
+df = pd.DataFrame.from_dict(data)
+
+# Encode sentences using BertSTEM:
+bert._encode_df(df, column='col_2', encoding='sum')
+
+```
+To classify sentences with COPUS models:
+
+```python
+from BERT_STEM.BertSTEM import *
+
+# Download BERT for classification (guiding/presenting/administration)
+bert_classification = BertSTEMForTextClassification(2, model_name = 'pablouribe/bertstem-copus-guiding')
+
+# Example dataframe with text in spanish
+data = {'col_1': [3, 2, 1],
+'col_2': ['hola como estan', 'alumnos queridos', 'vamos a hablar de matematicas']}
+
+df = pd.DataFrame.from_dict(data)
+
+# Classify sentences using BertSTEM for COPUS (Guiding):
+bert_classification.predict(df,'col_2')
+
+```
+
+
+To use it from HuggingFace:
+
+```python
+from BERT_STEM.Encode import *
+import pandas as pd
+import transformers
+
+# Download spanish BERTSTEM:
+model = transformers.BertModel.from_pretrained("pablouribe/bertstem")
+
+# Download spanish tokenizer:
+tokenizer = transformers.BertTokenizerFast.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased",
+ do_lower_case=True,
+ add_special_tokens = False)
+
+# Example dataframe with text in spanish
+data = {'col_1': [3, 2, 1],
+ 'col_2': ['hola como estan', 'alumnos queridos', 'vamos a hablar de matematicas']}
+
+df = pd.DataFrame.from_dict(data)
+
+# Encode sentences using BertSTEM:
+sentence_encoder(df, model, tokenizer, column = 'col_2', encoding = 'sum')
+```
+
+
+
+
+
+
+%package -n python3-bertstem
+Summary: BERT model fine-tuned on chilean STEM lessons
+Provides: python-bertstem
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-bertstem
+# BERT-STEM
+
+BERT model fine-tuned on Science Technology Engineering and Mathematics (STEM) lessons.
+
+## Install:
+
+To install from pip:
+
+```
+pip install bertstem
+```
+
+## Quickstart
+
+To encode sentences :
+
+```python
+from BERT_STEM.BertSTEM import *
+bert = BertSTEM()
+
+# Example dataframe with text in spanish
+data = {'col_1': [3, 2, 1],
+'col_2': ['hola como estan', 'alumnos queridos', 'vamos a hablar de matematicas']}
+
+df = pd.DataFrame.from_dict(data)
+
+# Encode sentences using BertSTEM:
+bert._encode_df(df, column='col_2', encoding='sum')
+
+```
+To classify sentences with COPUS models:
+
+```python
+from BERT_STEM.BertSTEM import *
+
+# Download BERT for classification (guiding/presenting/administration)
+bert_classification = BertSTEMForTextClassification(2, model_name = 'pablouribe/bertstem-copus-guiding')
+
+# Example dataframe with text in spanish
+data = {'col_1': [3, 2, 1],
+'col_2': ['hola como estan', 'alumnos queridos', 'vamos a hablar de matematicas']}
+
+df = pd.DataFrame.from_dict(data)
+
+# Classify sentences using BertSTEM for COPUS (Guiding):
+bert_classification.predict(df,'col_2')
+
+```
+
+
+To use it from HuggingFace:
+
+```python
+from BERT_STEM.Encode import *
+import pandas as pd
+import transformers
+
+# Download spanish BERTSTEM:
+model = transformers.BertModel.from_pretrained("pablouribe/bertstem")
+
+# Download spanish tokenizer:
+tokenizer = transformers.BertTokenizerFast.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased",
+ do_lower_case=True,
+ add_special_tokens = False)
+
+# Example dataframe with text in spanish
+data = {'col_1': [3, 2, 1],
+ 'col_2': ['hola como estan', 'alumnos queridos', 'vamos a hablar de matematicas']}
+
+df = pd.DataFrame.from_dict(data)
+
+# Encode sentences using BertSTEM:
+sentence_encoder(df, model, tokenizer, column = 'col_2', encoding = 'sum')
+```
+
+
+
+
+
+
+%package help
+Summary: Development documents and examples for bertstem
+Provides: python3-bertstem-doc
+%description help
+# BERT-STEM
+
+BERT model fine-tuned on Science Technology Engineering and Mathematics (STEM) lessons.
+
+## Install:
+
+To install from pip:
+
+```
+pip install bertstem
+```
+
+## Quickstart
+
+To encode sentences :
+
+```python
+from BERT_STEM.BertSTEM import *
+bert = BertSTEM()
+
+# Example dataframe with text in spanish
+data = {'col_1': [3, 2, 1],
+'col_2': ['hola como estan', 'alumnos queridos', 'vamos a hablar de matematicas']}
+
+df = pd.DataFrame.from_dict(data)
+
+# Encode sentences using BertSTEM:
+bert._encode_df(df, column='col_2', encoding='sum')
+
+```
+To classify sentences with COPUS models:
+
+```python
+from BERT_STEM.BertSTEM import *
+
+# Download BERT for classification (guiding/presenting/administration)
+bert_classification = BertSTEMForTextClassification(2, model_name = 'pablouribe/bertstem-copus-guiding')
+
+# Example dataframe with text in spanish
+data = {'col_1': [3, 2, 1],
+'col_2': ['hola como estan', 'alumnos queridos', 'vamos a hablar de matematicas']}
+
+df = pd.DataFrame.from_dict(data)
+
+# Classify sentences using BertSTEM for COPUS (Guiding):
+bert_classification.predict(df,'col_2')
+
+```
+
+
+To use it from HuggingFace:
+
+```python
+from BERT_STEM.Encode import *
+import pandas as pd
+import transformers
+
+# Download spanish BERTSTEM:
+model = transformers.BertModel.from_pretrained("pablouribe/bertstem")
+
+# Download spanish tokenizer:
+tokenizer = transformers.BertTokenizerFast.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased",
+ do_lower_case=True,
+ add_special_tokens = False)
+
+# Example dataframe with text in spanish
+data = {'col_1': [3, 2, 1],
+ 'col_2': ['hola como estan', 'alumnos queridos', 'vamos a hablar de matematicas']}
+
+df = pd.DataFrame.from_dict(data)
+
+# Encode sentences using BertSTEM:
+sentence_encoder(df, model, tokenizer, column = 'col_2', encoding = 'sum')
+```
+
+
+
+
+
+
+%prep
+%autosetup -n bertstem-0.0.33
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-bertstem -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.33-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..8168354
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+12247f399dc48cfdd362df25dc78f6c1 bertstem-0.0.33.tar.gz