1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
|
%global _empty_manifest_terminate_build 0
Name: python-bertviz
Version: 1.4.0
Release: 1
Summary: Attention visualization tool for NLP Transformer models.
License: Apache 2.0
URL: https://github.com/jessevig/bertviz
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/d9/55/fe157877b56b966688bfe8db19e6bfe32540fe912f5150052230a5dee564/bertviz-1.4.0.tar.gz
BuildArch: noarch
Requires: python3-transformers
Requires: python3-torch
Requires: python3-tqdm
Requires: python3-boto3
Requires: python3-requests
Requires: python3-regex
Requires: python3-sentencepiece
%description
<h1 align="center">
BertViz
</h1>
<h3 align="center">
Visualize Attention in NLP Models
</h3>
<h3 align="center">
<a href="#-quick-tour">Quick Tour</a> •
<a href="#%EF%B8%8F-getting-started">Getting Started</a> •
<a href="https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing">Colab Tutorial</a> •
<a href="https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1">Blog</a> •
<a href="https://www.aclweb.org/anthology/P19-3007.pdf">Paper</a> •
<a href="#-paper">Citation</a>
</h3>
BertViz is an interactive tool for visualizing attention in [Transformer](https://jalammar.github.io/illustrated-transformer/) language models such as BERT, GPT2, or T5. It can be run inside a Jupyter or Colab
notebook through a simple Python API that supports most [Huggingface models](https://huggingface.co/models). BertViz extends the
[Tensor2Tensor visualization tool](https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/visualization)
by [Llion Jones](https://medium.com/@llionj), providing multiple views that each offer a unique lens into the attention mechanism.
For updates on BertViz and related projects, feel free to follow me on [Twitter](https://twitter.com/jesse_vig).
## 🚀 Quick Tour
### Head View
The *head view* visualizes attention for one or more attention heads in the same
layer. It is based on the excellent [Tensor2Tensor visualization tool](https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/visualization) by [Llion Jones](https://medium.com/@llionj).
🕹 Try out the head view in the [<b><u>Interactive Colab Tutorial</u></b>](https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing) (all visualizations pre-loaded).
<p>
<img src="https://raw.githubusercontent.com/jessevig/bertviz/master/images/head-view.gif" width="425"/>
</p>
### Model View
The *model view* shows a bird's-eye view of attention across all layers and heads.
🕹 Try out the model view in the [<b><u>Interactive Colab Tutorial</u></b>](https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing) (all visualizations pre-loaded).

### Neuron View
The *neuron view* visualizes individual neurons in the query and key vectors and shows how they are used to compute attention.
🕹 Try out the neuron view in the [<b><u>Interactive Colab Tutorial</u></b>](https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing) (all visualizations pre-loaded).

## ⚡️ Getting Started
### Running BertViz in a Jupyter Notebook
From the command line:
```bash
pip install bertviz
```
You must also have Jupyter Notebook and ipywidgets installed:
```bash
pip install jupyterlab
pip install ipywidgets
```
(If you run into any issues installing Jupyter or ipywidgets, consult the documentation [here](https://jupyter.org/install) and [here](https://ipywidgets.readthedocs.io/en/stable/user_install.html).)
To create a new Jupyter notebook, simply run:
```bash
jupyter notebook
```
Then click `New` and select `Python 3 (ipykernel)` if prompted.
### Running BertViz in Colab
To run in [Colab](https://colab.research.google.com/), simply add the following cell at the beginning of your Colab notebook:
```
!pip install bertviz
```
### Sample code
Run the following code to load the `xtremedistil-l12-h384-uncased` model and display it in the model view:
```python
from transformers import AutoTokenizer, AutoModel, utils
from bertviz import model_view
utils.logging.set_verbosity_error() # Suppress standard warnings
model_name = "microsoft/xtremedistil-l12-h384-uncased" # Find popular HuggingFace models here: https://huggingface.co/models
input_text = "The cat sat on the mat"
model = AutoModel.from_pretrained(model_name, output_attentions=True) # Configure model to return attention values
tokenizer = AutoTokenizer.from_pretrained(model_name)
inputs = tokenizer.encode(input_text, return_tensors='pt') # Tokenize input text
outputs = model(inputs) # Run model
attention = outputs[-1] # Retrieve attention from model outputs
tokens = tokenizer.convert_ids_to_tokens(inputs[0]) # Convert input ids to token strings
model_view(attention, tokens) # Display model view
```
The visualization may take a few seconds to load. Feel free to experiment with different input texts and
[models](https://huggingface.co/models).
See [Documentation](#-documentation) for additional use cases and examples, e.g., encoder-decoder models.
#### Running sample notebooks
You may also run any of the sample [notebooks](notebooks/) included with BertViz:
```bash
git clone --depth 1 git@github.com:jessevig/bertviz.git
cd bertviz/notebooks
jupyter notebook
```
## 🕹 Interactive Tutorial
Check out the [<b><u>Interactive Colab Tutorial</u></b>](https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing)
to learn more about BertViz and try out the tool. <b>Note</b>: all visualizations are pre-loaded, so there is no need to execute any cells.
[](https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing)
## 📖 Documentation
### Table of contents
- [Self-attention models (BERT, GPT-2, etc.)](#self-attention-models-bert-gpt-2-etc)
* [Head and Model Views](#head-and-model-views)
* [Neuron View](#neuron-view-1)
- [Encoder-decoder models (BART, T5, etc.)](#encoder-decoder-models-bart-t5-etc)
- [Installing from source](#installing-from-source)
- [Additional options](#additional-options)
* [Dark / light mode](#dark--light-mode)
* [Filtering layers](#filtering-layers)
* [Setting default layer/head(s)](#setting-default-layer-head-s)
* [Visualizing sentence pairs](#visualizing-sentence-pairs)
* [Obtain HTML representations](#obtain-HTML-representations)
* [Non-Huggingface models](#non-huggingface-models)
### Self-attention models (BERT, GPT-2, etc.)
#### Head and Model Views
First load a Huggingface model, either a pre-trained model as shown below, or your own fine-tuned model.
Be sure to set `output_attentions=True`.
```python
from transformers import AutoTokenizer, AutoModel, utils
utils.logging.set_verbosity_error() # Suppress standard warnings
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModel.from_pretrained("bert-base-uncased", output_attentions=True)
```
Then prepare inputs and compute attention:
```python
inputs = tokenizer.encode("The cat sat on the mat", return_tensors='pt')
outputs = model(inputs)
attention = outputs[-1] # Output includes attention weights when output_attentions=True
tokens = tokenizer.convert_ids_to_tokens(inputs[0])
```
Finally, display the attention weights using the [`head_view`](bertviz/head_view.py) or [`model_view`](bertviz/model_view.py)
functions:
```python
from bertviz import head_view
head_view(attention, tokens)
```
<b>Examples</b>: DistilBERT ([Model View Notebook](notebooks/model_view_distilbert.ipynb), [Head View Notebook](notebooks/head_view_distilbert.ipynb))
For full API, please refer to the source code for the [head view](bertviz/head_view.py) or [model view](bertviz/model_view.py).
#### Neuron View
The neuron view is invoked differently than the head view or model view, due to requiring access to the model's
query/key vectors, which are not returned through the Huggingface API. It is currently limited to custom versions of BERT, GPT-2, and
RoBERTa included with BertViz.
```python
# Import specialized versions of models (that return query/key vectors)
from bertviz.transformers_neuron_view import BertModel, BertTokenizer
from bertviz.neuron_view import show
model_type = 'bert'
model_version = 'bert-base-uncased'
do_lower_case = True
sentence_a = "The cat sat on the mat"
sentence_b = "The cat lay on the rug"
model = BertModel.from_pretrained(model_version, output_attentions=True)
tokenizer = BertTokenizer.from_pretrained(model_version, do_lower_case=do_lower_case)
show(model, model_type, tokenizer, sentence_a, sentence_b, layer=2, head=0)
```
<b>Examples</b>:
BERT ([Notebook](notebooks/neuron_view_bert.ipynb),
[Colab](https://colab.research.google.com/drive/1m37iotFeubMrp9qIf9yscXEL1zhxTN2b)) •
GPT-2 ([Notebook](notebooks/neuron_view_gpt2.ipynb),
[Colab](https://colab.research.google.com/drive/1s8XCCyxsKvNRWNzjWi5Nl8ZAYZ5YkLm_)) •
RoBERTa
([Notebook](notebooks/neuron_view_roberta.ipynb))
For full API, please refer to the [source](bertviz/neuron_view.py).
### Encoder-decoder models (BART, T5, etc.)
The head view and model view both support encoder-decoder models.
First, load an encoder-decoder model:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
model = AutoModel.from_pretrained("Helsinki-NLP/opus-mt-en-de", output_attentions=True)
```
Then prepare the inputs and compute attention:
```python
encoder_input_ids = tokenizer("She sees the small elephant.", return_tensors="pt", add_special_tokens=True).input_ids
decoder_input_ids = tokenizer("Sie sieht den kleinen Elefanten.", return_tensors="pt", add_special_tokens=True).input_ids
outputs = model(input_ids=encoder_input_ids, decoder_input_ids=decoder_input_ids)
encoder_text = tokenizer.convert_ids_to_tokens(encoder_input_ids[0])
decoder_text = tokenizer.convert_ids_to_tokens(decoder_input_ids[0])
```
Finally, display the visualization using either [`head_view`](bertviz/head_view.py) or [`model_view`](bertviz/model_view.py).
```python
from bertviz import model_view
model_view(
encoder_attention=outputs.encoder_attentions,
decoder_attention=outputs.decoder_attentions,
cross_attention=outputs.cross_attentions,
encoder_tokens= encoder_text,
decoder_tokens = decoder_text
)
```
You may select `Encoder`, `Decoder`, or `Cross` attention from the drop-down in the upper left corner of the visualization.
<b>Examples</b>: MarianMT ([Notebook](notebooks/model_view_encoder_decoder.ipynb)) • BART ([Notebook](notebooks/model_view_bart.ipynb))
For full API, please refer to the source code for the [head view](bertviz/head_view.py) or [model view](bertviz/model_view.py).
### Installing from source
```bash
git clone https://github.com/jessevig/bertviz.git
cd bertviz
python setup.py develop
```
### Additional options
#### Dark / light mode
The model view and neuron view support dark (default) and light modes. You may set the mode using
the `display_mode` parameter:
```python
model_view(attention, tokens, display_mode="light")
```
#### Filtering layers
To improve the responsiveness of the tool when visualizing larger models or inputs, you may set the `include_layers`
parameter to restrict the visualization to a subset of layers (zero-indexed). This option is available in the head view and model
view.
**Example:** Render model view with only layers 5 and 6 displayed
```python
model_view(attention, tokens, include_layers=[5, 6])
```
For the model view, you may also restrict the visualization to a subset of attention heads (zero-indexed) by setting the
`include_heads` parameter.
#### Setting default layer/head(s)
In the head view, you may choose a specific `layer` and collection of `heads` as the default selection when the
visualization first renders. Note: this is different from the `include_heads`/`include_layers` parameter (above), which
removes layers and heads from the visualization completely.
**Example:** Render head view with layer 2 and heads 3 and 5 pre-selected
```python
head_view(attention, tokens, layer=2, heads=[3,5])
```
You may also pre-select a specific `layer` and single `head` for the neuron view.
#### Visualizing sentence pairs
Some models, e.g. BERT, accept a pair of sentences as input. BertViz optionally supports a drop-down menu that allows
user to filter attention based on which sentence the tokens are in, e.g. only show attention between tokens in first
sentence and tokens in second sentence.
##### Head and model views
To enable this feature when invoking the [`head_view`](bertviz/head_view.py) or [`model_view`](bertviz/model_view.py) functions, set
the `sentence_b_start` parameter to the start index of the second sentence. Note that the method for computing this
index will depend on the model.
Example (BERT):
```python
from bertviz import head_view
from transformers import AutoTokenizer, AutoModel, utils
utils.logging.set_verbosity_error() # Suppress standard warnings
# NOTE: This code is model-specific
model_version = 'bert-base-uncased'
model = AutoModel.from_pretrained(model_version, output_attentions=True)
tokenizer = AutoTokenizer.from_pretrained(model_version)
sentence_a = "the rabbit quickly hopped"
sentence_b = "The turtle slowly crawled"
inputs = tokenizer.encode_plus(sentence_a, sentence_b, return_tensors='pt')
input_ids = inputs['input_ids']
token_type_ids = inputs['token_type_ids'] # token type id is 0 for Sentence A and 1 for Sentence B
attention = model(input_ids, token_type_ids=token_type_ids)[-1]
sentence_b_start = token_type_ids[0].tolist().index(1) # Sentence B starts at first index of token type id 1
token_ids = input_ids[0].tolist() # Batch index 0
tokens = tokenizer.convert_ids_to_tokens(token_ids)
head_view(attention, tokens, sentence_b_start)
```
##### Neuron view
To enable this option in the neuron view, simply set the `sentence_a` and `sentence_b` parameters in [`neuron_view.show()`](bertviz/neuron_view.py).
#### Obtain HTML representations
Support to retrieve the generated HTML representations has been added to head_view, model_view and neuron_view.
Setting the 'html_action' parameter to 'return' will make the function call return a single HTML Python object that can be further processed. Remember you can access the HTML source using the data attribute of a Python HTML object.
The default behavior for 'html_action' is 'view', which will display the visualization but won't return the HTML object.
This functionality is useful if you need to:
- Save the representation as an independent HTML file that can be accessed via web browser
- Use custom display methods as the ones needed in Databricks to visualize HTML objects
Example (head and model views):
```python
from transformers import AutoTokenizer, AutoModel, utils
from bertviz import head_view
utils.logging.set_verbosity_error() # Suppress standard warnings
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModel.from_pretrained("bert-base-uncased", output_attentions=True)
inputs = tokenizer.encode("The cat sat on the mat", return_tensors='pt')
outputs = model(inputs)
attention = outputs[-1] # Output includes attention weights when output_attentions=True
tokens = tokenizer.convert_ids_to_tokens(inputs[0])
html_head_view = head_view(attention, tokens, html_action='return')
with open("PATH_TO_YOUR_FILE/head_view.html", 'w') as file:
file.write(html_head_view.data)
```
Example (neuron view):
```python
# Import specialized versions of models (that return query/key vectors)
from bertviz.transformers_neuron_view import BertModel, BertTokenizer
from bertviz.neuron_view import show
model_type = 'bert'
model_version = 'bert-base-uncased'
do_lower_case = True
sentence_a = "The cat sat on the mat"
sentence_b = "The cat lay on the rug"
model = BertModel.from_pretrained(model_version, output_attentions=True)
tokenizer = BertTokenizer.from_pretrained(model_version, do_lower_case=do_lower_case)
html_neuron_view = show(model, model_type, tokenizer, sentence_a, sentence_b, layer=2, head=0, html_action='return')
with open("PATH_TO_YOUR_FILE/neuron_view.html", 'w') as file:
file.write(html_neuron_view.data)
```
#### Non-Huggingface models
The head view and model view may be used to
visualize self-attention for any standard Transformer model,
as long as the attention weights are available and follow the format specified in [`head_view`](bertviz/head_view.py) and
[`model_view`](bertviz/model_view.py) (which is the format
returned from Huggingface models). In some case, Tensorflow checkpoints may be loaded as Huggingface models as described
in the
[Huggingface docs](https://huggingface.co/transformers/).
## ⚠️ Limitations
### Tool
* This tool is designed for shorter inputs and may run slowly if the input text is very long and/or the model is very large.
To mitigate this, you may wish to filter the layers displayed by setting the **`include_layers`** parameter, as described [above](#filtering-layers).
* When running on Colab, some of the visualizations will fail (runtime disconnection) when the input text is long. To mitigate this, you may wish to filter the layers displayed by setting the **`include_layers`** parameter, as described [above](#filtering-layers).
* The *neuron view* only supports the custom BERT, GPT-2, and RoBERTa models included with the tool. This view needs access to the query and key vectors,
which required modifying the model code (see `transformers_neuron_view` directory), which has only been done for these three models.
### Attention as "explanation"?
* Visualizing attention weights illuminates one type of architecture within the model but does not
necessarily provide a direct *explanation* for predictions [[1](https://arxiv.org/pdf/1909.11218.pdf), [2](https://arxiv.org/abs/1902.10186), [3](https://arxiv.org/pdf/1908.04626.pdf)].
* If you wish to understand how the input text influences output predictions more directly, consider [saliency methods](https://arxiv.org/pdf/2010.05607.pdf) provided
by tools such as the [Language Interpretability Toolkit](https://github.com/PAIR-code/lit) or [Ecco](https://github.com/jalammar/ecco).
## 🔬 Paper
[<b>A Multiscale Visualization of Attention in the Transformer Model</b>](https://www.aclweb.org/anthology/P19-3007.pdf) (ACL System Demonstrations 2019).
### Citation
```bibtex
@inproceedings{vig-2019-multiscale,
title = "A Multiscale Visualization of Attention in the Transformer Model",
author = "Vig, Jesse",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P19-3007",
doi = "10.18653/v1/P19-3007",
pages = "37--42",
}
```
## Authors
Jesse Vig [(homepage)](https://jessevig.com)
## 🙏 Acknowledgments
We are grateful to the authors of the following projects, which are incorporated into this repo:
* https://github.com/tensorflow/tensor2tensor
* https://github.com/huggingface/pytorch-pretrained-BERT
## License
This project is licensed under the Apache 2.0 License - see the [LICENSE](LICENSE) file for details
%package -n python3-bertviz
Summary: Attention visualization tool for NLP Transformer models.
Provides: python-bertviz
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-bertviz
<h1 align="center">
BertViz
</h1>
<h3 align="center">
Visualize Attention in NLP Models
</h3>
<h3 align="center">
<a href="#-quick-tour">Quick Tour</a> •
<a href="#%EF%B8%8F-getting-started">Getting Started</a> •
<a href="https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing">Colab Tutorial</a> •
<a href="https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1">Blog</a> •
<a href="https://www.aclweb.org/anthology/P19-3007.pdf">Paper</a> •
<a href="#-paper">Citation</a>
</h3>
BertViz is an interactive tool for visualizing attention in [Transformer](https://jalammar.github.io/illustrated-transformer/) language models such as BERT, GPT2, or T5. It can be run inside a Jupyter or Colab
notebook through a simple Python API that supports most [Huggingface models](https://huggingface.co/models). BertViz extends the
[Tensor2Tensor visualization tool](https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/visualization)
by [Llion Jones](https://medium.com/@llionj), providing multiple views that each offer a unique lens into the attention mechanism.
For updates on BertViz and related projects, feel free to follow me on [Twitter](https://twitter.com/jesse_vig).
## 🚀 Quick Tour
### Head View
The *head view* visualizes attention for one or more attention heads in the same
layer. It is based on the excellent [Tensor2Tensor visualization tool](https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/visualization) by [Llion Jones](https://medium.com/@llionj).
🕹 Try out the head view in the [<b><u>Interactive Colab Tutorial</u></b>](https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing) (all visualizations pre-loaded).
<p>
<img src="https://raw.githubusercontent.com/jessevig/bertviz/master/images/head-view.gif" width="425"/>
</p>
### Model View
The *model view* shows a bird's-eye view of attention across all layers and heads.
🕹 Try out the model view in the [<b><u>Interactive Colab Tutorial</u></b>](https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing) (all visualizations pre-loaded).

### Neuron View
The *neuron view* visualizes individual neurons in the query and key vectors and shows how they are used to compute attention.
🕹 Try out the neuron view in the [<b><u>Interactive Colab Tutorial</u></b>](https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing) (all visualizations pre-loaded).

## ⚡️ Getting Started
### Running BertViz in a Jupyter Notebook
From the command line:
```bash
pip install bertviz
```
You must also have Jupyter Notebook and ipywidgets installed:
```bash
pip install jupyterlab
pip install ipywidgets
```
(If you run into any issues installing Jupyter or ipywidgets, consult the documentation [here](https://jupyter.org/install) and [here](https://ipywidgets.readthedocs.io/en/stable/user_install.html).)
To create a new Jupyter notebook, simply run:
```bash
jupyter notebook
```
Then click `New` and select `Python 3 (ipykernel)` if prompted.
### Running BertViz in Colab
To run in [Colab](https://colab.research.google.com/), simply add the following cell at the beginning of your Colab notebook:
```
!pip install bertviz
```
### Sample code
Run the following code to load the `xtremedistil-l12-h384-uncased` model and display it in the model view:
```python
from transformers import AutoTokenizer, AutoModel, utils
from bertviz import model_view
utils.logging.set_verbosity_error() # Suppress standard warnings
model_name = "microsoft/xtremedistil-l12-h384-uncased" # Find popular HuggingFace models here: https://huggingface.co/models
input_text = "The cat sat on the mat"
model = AutoModel.from_pretrained(model_name, output_attentions=True) # Configure model to return attention values
tokenizer = AutoTokenizer.from_pretrained(model_name)
inputs = tokenizer.encode(input_text, return_tensors='pt') # Tokenize input text
outputs = model(inputs) # Run model
attention = outputs[-1] # Retrieve attention from model outputs
tokens = tokenizer.convert_ids_to_tokens(inputs[0]) # Convert input ids to token strings
model_view(attention, tokens) # Display model view
```
The visualization may take a few seconds to load. Feel free to experiment with different input texts and
[models](https://huggingface.co/models).
See [Documentation](#-documentation) for additional use cases and examples, e.g., encoder-decoder models.
#### Running sample notebooks
You may also run any of the sample [notebooks](notebooks/) included with BertViz:
```bash
git clone --depth 1 git@github.com:jessevig/bertviz.git
cd bertviz/notebooks
jupyter notebook
```
## 🕹 Interactive Tutorial
Check out the [<b><u>Interactive Colab Tutorial</u></b>](https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing)
to learn more about BertViz and try out the tool. <b>Note</b>: all visualizations are pre-loaded, so there is no need to execute any cells.
[](https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing)
## 📖 Documentation
### Table of contents
- [Self-attention models (BERT, GPT-2, etc.)](#self-attention-models-bert-gpt-2-etc)
* [Head and Model Views](#head-and-model-views)
* [Neuron View](#neuron-view-1)
- [Encoder-decoder models (BART, T5, etc.)](#encoder-decoder-models-bart-t5-etc)
- [Installing from source](#installing-from-source)
- [Additional options](#additional-options)
* [Dark / light mode](#dark--light-mode)
* [Filtering layers](#filtering-layers)
* [Setting default layer/head(s)](#setting-default-layer-head-s)
* [Visualizing sentence pairs](#visualizing-sentence-pairs)
* [Obtain HTML representations](#obtain-HTML-representations)
* [Non-Huggingface models](#non-huggingface-models)
### Self-attention models (BERT, GPT-2, etc.)
#### Head and Model Views
First load a Huggingface model, either a pre-trained model as shown below, or your own fine-tuned model.
Be sure to set `output_attentions=True`.
```python
from transformers import AutoTokenizer, AutoModel, utils
utils.logging.set_verbosity_error() # Suppress standard warnings
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModel.from_pretrained("bert-base-uncased", output_attentions=True)
```
Then prepare inputs and compute attention:
```python
inputs = tokenizer.encode("The cat sat on the mat", return_tensors='pt')
outputs = model(inputs)
attention = outputs[-1] # Output includes attention weights when output_attentions=True
tokens = tokenizer.convert_ids_to_tokens(inputs[0])
```
Finally, display the attention weights using the [`head_view`](bertviz/head_view.py) or [`model_view`](bertviz/model_view.py)
functions:
```python
from bertviz import head_view
head_view(attention, tokens)
```
<b>Examples</b>: DistilBERT ([Model View Notebook](notebooks/model_view_distilbert.ipynb), [Head View Notebook](notebooks/head_view_distilbert.ipynb))
For full API, please refer to the source code for the [head view](bertviz/head_view.py) or [model view](bertviz/model_view.py).
#### Neuron View
The neuron view is invoked differently than the head view or model view, due to requiring access to the model's
query/key vectors, which are not returned through the Huggingface API. It is currently limited to custom versions of BERT, GPT-2, and
RoBERTa included with BertViz.
```python
# Import specialized versions of models (that return query/key vectors)
from bertviz.transformers_neuron_view import BertModel, BertTokenizer
from bertviz.neuron_view import show
model_type = 'bert'
model_version = 'bert-base-uncased'
do_lower_case = True
sentence_a = "The cat sat on the mat"
sentence_b = "The cat lay on the rug"
model = BertModel.from_pretrained(model_version, output_attentions=True)
tokenizer = BertTokenizer.from_pretrained(model_version, do_lower_case=do_lower_case)
show(model, model_type, tokenizer, sentence_a, sentence_b, layer=2, head=0)
```
<b>Examples</b>:
BERT ([Notebook](notebooks/neuron_view_bert.ipynb),
[Colab](https://colab.research.google.com/drive/1m37iotFeubMrp9qIf9yscXEL1zhxTN2b)) •
GPT-2 ([Notebook](notebooks/neuron_view_gpt2.ipynb),
[Colab](https://colab.research.google.com/drive/1s8XCCyxsKvNRWNzjWi5Nl8ZAYZ5YkLm_)) •
RoBERTa
([Notebook](notebooks/neuron_view_roberta.ipynb))
For full API, please refer to the [source](bertviz/neuron_view.py).
### Encoder-decoder models (BART, T5, etc.)
The head view and model view both support encoder-decoder models.
First, load an encoder-decoder model:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
model = AutoModel.from_pretrained("Helsinki-NLP/opus-mt-en-de", output_attentions=True)
```
Then prepare the inputs and compute attention:
```python
encoder_input_ids = tokenizer("She sees the small elephant.", return_tensors="pt", add_special_tokens=True).input_ids
decoder_input_ids = tokenizer("Sie sieht den kleinen Elefanten.", return_tensors="pt", add_special_tokens=True).input_ids
outputs = model(input_ids=encoder_input_ids, decoder_input_ids=decoder_input_ids)
encoder_text = tokenizer.convert_ids_to_tokens(encoder_input_ids[0])
decoder_text = tokenizer.convert_ids_to_tokens(decoder_input_ids[0])
```
Finally, display the visualization using either [`head_view`](bertviz/head_view.py) or [`model_view`](bertviz/model_view.py).
```python
from bertviz import model_view
model_view(
encoder_attention=outputs.encoder_attentions,
decoder_attention=outputs.decoder_attentions,
cross_attention=outputs.cross_attentions,
encoder_tokens= encoder_text,
decoder_tokens = decoder_text
)
```
You may select `Encoder`, `Decoder`, or `Cross` attention from the drop-down in the upper left corner of the visualization.
<b>Examples</b>: MarianMT ([Notebook](notebooks/model_view_encoder_decoder.ipynb)) • BART ([Notebook](notebooks/model_view_bart.ipynb))
For full API, please refer to the source code for the [head view](bertviz/head_view.py) or [model view](bertviz/model_view.py).
### Installing from source
```bash
git clone https://github.com/jessevig/bertviz.git
cd bertviz
python setup.py develop
```
### Additional options
#### Dark / light mode
The model view and neuron view support dark (default) and light modes. You may set the mode using
the `display_mode` parameter:
```python
model_view(attention, tokens, display_mode="light")
```
#### Filtering layers
To improve the responsiveness of the tool when visualizing larger models or inputs, you may set the `include_layers`
parameter to restrict the visualization to a subset of layers (zero-indexed). This option is available in the head view and model
view.
**Example:** Render model view with only layers 5 and 6 displayed
```python
model_view(attention, tokens, include_layers=[5, 6])
```
For the model view, you may also restrict the visualization to a subset of attention heads (zero-indexed) by setting the
`include_heads` parameter.
#### Setting default layer/head(s)
In the head view, you may choose a specific `layer` and collection of `heads` as the default selection when the
visualization first renders. Note: this is different from the `include_heads`/`include_layers` parameter (above), which
removes layers and heads from the visualization completely.
**Example:** Render head view with layer 2 and heads 3 and 5 pre-selected
```python
head_view(attention, tokens, layer=2, heads=[3,5])
```
You may also pre-select a specific `layer` and single `head` for the neuron view.
#### Visualizing sentence pairs
Some models, e.g. BERT, accept a pair of sentences as input. BertViz optionally supports a drop-down menu that allows
user to filter attention based on which sentence the tokens are in, e.g. only show attention between tokens in first
sentence and tokens in second sentence.
##### Head and model views
To enable this feature when invoking the [`head_view`](bertviz/head_view.py) or [`model_view`](bertviz/model_view.py) functions, set
the `sentence_b_start` parameter to the start index of the second sentence. Note that the method for computing this
index will depend on the model.
Example (BERT):
```python
from bertviz import head_view
from transformers import AutoTokenizer, AutoModel, utils
utils.logging.set_verbosity_error() # Suppress standard warnings
# NOTE: This code is model-specific
model_version = 'bert-base-uncased'
model = AutoModel.from_pretrained(model_version, output_attentions=True)
tokenizer = AutoTokenizer.from_pretrained(model_version)
sentence_a = "the rabbit quickly hopped"
sentence_b = "The turtle slowly crawled"
inputs = tokenizer.encode_plus(sentence_a, sentence_b, return_tensors='pt')
input_ids = inputs['input_ids']
token_type_ids = inputs['token_type_ids'] # token type id is 0 for Sentence A and 1 for Sentence B
attention = model(input_ids, token_type_ids=token_type_ids)[-1]
sentence_b_start = token_type_ids[0].tolist().index(1) # Sentence B starts at first index of token type id 1
token_ids = input_ids[0].tolist() # Batch index 0
tokens = tokenizer.convert_ids_to_tokens(token_ids)
head_view(attention, tokens, sentence_b_start)
```
##### Neuron view
To enable this option in the neuron view, simply set the `sentence_a` and `sentence_b` parameters in [`neuron_view.show()`](bertviz/neuron_view.py).
#### Obtain HTML representations
Support to retrieve the generated HTML representations has been added to head_view, model_view and neuron_view.
Setting the 'html_action' parameter to 'return' will make the function call return a single HTML Python object that can be further processed. Remember you can access the HTML source using the data attribute of a Python HTML object.
The default behavior for 'html_action' is 'view', which will display the visualization but won't return the HTML object.
This functionality is useful if you need to:
- Save the representation as an independent HTML file that can be accessed via web browser
- Use custom display methods as the ones needed in Databricks to visualize HTML objects
Example (head and model views):
```python
from transformers import AutoTokenizer, AutoModel, utils
from bertviz import head_view
utils.logging.set_verbosity_error() # Suppress standard warnings
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModel.from_pretrained("bert-base-uncased", output_attentions=True)
inputs = tokenizer.encode("The cat sat on the mat", return_tensors='pt')
outputs = model(inputs)
attention = outputs[-1] # Output includes attention weights when output_attentions=True
tokens = tokenizer.convert_ids_to_tokens(inputs[0])
html_head_view = head_view(attention, tokens, html_action='return')
with open("PATH_TO_YOUR_FILE/head_view.html", 'w') as file:
file.write(html_head_view.data)
```
Example (neuron view):
```python
# Import specialized versions of models (that return query/key vectors)
from bertviz.transformers_neuron_view import BertModel, BertTokenizer
from bertviz.neuron_view import show
model_type = 'bert'
model_version = 'bert-base-uncased'
do_lower_case = True
sentence_a = "The cat sat on the mat"
sentence_b = "The cat lay on the rug"
model = BertModel.from_pretrained(model_version, output_attentions=True)
tokenizer = BertTokenizer.from_pretrained(model_version, do_lower_case=do_lower_case)
html_neuron_view = show(model, model_type, tokenizer, sentence_a, sentence_b, layer=2, head=0, html_action='return')
with open("PATH_TO_YOUR_FILE/neuron_view.html", 'w') as file:
file.write(html_neuron_view.data)
```
#### Non-Huggingface models
The head view and model view may be used to
visualize self-attention for any standard Transformer model,
as long as the attention weights are available and follow the format specified in [`head_view`](bertviz/head_view.py) and
[`model_view`](bertviz/model_view.py) (which is the format
returned from Huggingface models). In some case, Tensorflow checkpoints may be loaded as Huggingface models as described
in the
[Huggingface docs](https://huggingface.co/transformers/).
## ⚠️ Limitations
### Tool
* This tool is designed for shorter inputs and may run slowly if the input text is very long and/or the model is very large.
To mitigate this, you may wish to filter the layers displayed by setting the **`include_layers`** parameter, as described [above](#filtering-layers).
* When running on Colab, some of the visualizations will fail (runtime disconnection) when the input text is long. To mitigate this, you may wish to filter the layers displayed by setting the **`include_layers`** parameter, as described [above](#filtering-layers).
* The *neuron view* only supports the custom BERT, GPT-2, and RoBERTa models included with the tool. This view needs access to the query and key vectors,
which required modifying the model code (see `transformers_neuron_view` directory), which has only been done for these three models.
### Attention as "explanation"?
* Visualizing attention weights illuminates one type of architecture within the model but does not
necessarily provide a direct *explanation* for predictions [[1](https://arxiv.org/pdf/1909.11218.pdf), [2](https://arxiv.org/abs/1902.10186), [3](https://arxiv.org/pdf/1908.04626.pdf)].
* If you wish to understand how the input text influences output predictions more directly, consider [saliency methods](https://arxiv.org/pdf/2010.05607.pdf) provided
by tools such as the [Language Interpretability Toolkit](https://github.com/PAIR-code/lit) or [Ecco](https://github.com/jalammar/ecco).
## 🔬 Paper
[<b>A Multiscale Visualization of Attention in the Transformer Model</b>](https://www.aclweb.org/anthology/P19-3007.pdf) (ACL System Demonstrations 2019).
### Citation
```bibtex
@inproceedings{vig-2019-multiscale,
title = "A Multiscale Visualization of Attention in the Transformer Model",
author = "Vig, Jesse",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P19-3007",
doi = "10.18653/v1/P19-3007",
pages = "37--42",
}
```
## Authors
Jesse Vig [(homepage)](https://jessevig.com)
## 🙏 Acknowledgments
We are grateful to the authors of the following projects, which are incorporated into this repo:
* https://github.com/tensorflow/tensor2tensor
* https://github.com/huggingface/pytorch-pretrained-BERT
## License
This project is licensed under the Apache 2.0 License - see the [LICENSE](LICENSE) file for details
%package help
Summary: Development documents and examples for bertviz
Provides: python3-bertviz-doc
%description help
<h1 align="center">
BertViz
</h1>
<h3 align="center">
Visualize Attention in NLP Models
</h3>
<h3 align="center">
<a href="#-quick-tour">Quick Tour</a> •
<a href="#%EF%B8%8F-getting-started">Getting Started</a> •
<a href="https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing">Colab Tutorial</a> •
<a href="https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1">Blog</a> •
<a href="https://www.aclweb.org/anthology/P19-3007.pdf">Paper</a> •
<a href="#-paper">Citation</a>
</h3>
BertViz is an interactive tool for visualizing attention in [Transformer](https://jalammar.github.io/illustrated-transformer/) language models such as BERT, GPT2, or T5. It can be run inside a Jupyter or Colab
notebook through a simple Python API that supports most [Huggingface models](https://huggingface.co/models). BertViz extends the
[Tensor2Tensor visualization tool](https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/visualization)
by [Llion Jones](https://medium.com/@llionj), providing multiple views that each offer a unique lens into the attention mechanism.
For updates on BertViz and related projects, feel free to follow me on [Twitter](https://twitter.com/jesse_vig).
## 🚀 Quick Tour
### Head View
The *head view* visualizes attention for one or more attention heads in the same
layer. It is based on the excellent [Tensor2Tensor visualization tool](https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/visualization) by [Llion Jones](https://medium.com/@llionj).
🕹 Try out the head view in the [<b><u>Interactive Colab Tutorial</u></b>](https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing) (all visualizations pre-loaded).
<p>
<img src="https://raw.githubusercontent.com/jessevig/bertviz/master/images/head-view.gif" width="425"/>
</p>
### Model View
The *model view* shows a bird's-eye view of attention across all layers and heads.
🕹 Try out the model view in the [<b><u>Interactive Colab Tutorial</u></b>](https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing) (all visualizations pre-loaded).

### Neuron View
The *neuron view* visualizes individual neurons in the query and key vectors and shows how they are used to compute attention.
🕹 Try out the neuron view in the [<b><u>Interactive Colab Tutorial</u></b>](https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing) (all visualizations pre-loaded).

## ⚡️ Getting Started
### Running BertViz in a Jupyter Notebook
From the command line:
```bash
pip install bertviz
```
You must also have Jupyter Notebook and ipywidgets installed:
```bash
pip install jupyterlab
pip install ipywidgets
```
(If you run into any issues installing Jupyter or ipywidgets, consult the documentation [here](https://jupyter.org/install) and [here](https://ipywidgets.readthedocs.io/en/stable/user_install.html).)
To create a new Jupyter notebook, simply run:
```bash
jupyter notebook
```
Then click `New` and select `Python 3 (ipykernel)` if prompted.
### Running BertViz in Colab
To run in [Colab](https://colab.research.google.com/), simply add the following cell at the beginning of your Colab notebook:
```
!pip install bertviz
```
### Sample code
Run the following code to load the `xtremedistil-l12-h384-uncased` model and display it in the model view:
```python
from transformers import AutoTokenizer, AutoModel, utils
from bertviz import model_view
utils.logging.set_verbosity_error() # Suppress standard warnings
model_name = "microsoft/xtremedistil-l12-h384-uncased" # Find popular HuggingFace models here: https://huggingface.co/models
input_text = "The cat sat on the mat"
model = AutoModel.from_pretrained(model_name, output_attentions=True) # Configure model to return attention values
tokenizer = AutoTokenizer.from_pretrained(model_name)
inputs = tokenizer.encode(input_text, return_tensors='pt') # Tokenize input text
outputs = model(inputs) # Run model
attention = outputs[-1] # Retrieve attention from model outputs
tokens = tokenizer.convert_ids_to_tokens(inputs[0]) # Convert input ids to token strings
model_view(attention, tokens) # Display model view
```
The visualization may take a few seconds to load. Feel free to experiment with different input texts and
[models](https://huggingface.co/models).
See [Documentation](#-documentation) for additional use cases and examples, e.g., encoder-decoder models.
#### Running sample notebooks
You may also run any of the sample [notebooks](notebooks/) included with BertViz:
```bash
git clone --depth 1 git@github.com:jessevig/bertviz.git
cd bertviz/notebooks
jupyter notebook
```
## 🕹 Interactive Tutorial
Check out the [<b><u>Interactive Colab Tutorial</u></b>](https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing)
to learn more about BertViz and try out the tool. <b>Note</b>: all visualizations are pre-loaded, so there is no need to execute any cells.
[](https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing)
## 📖 Documentation
### Table of contents
- [Self-attention models (BERT, GPT-2, etc.)](#self-attention-models-bert-gpt-2-etc)
* [Head and Model Views](#head-and-model-views)
* [Neuron View](#neuron-view-1)
- [Encoder-decoder models (BART, T5, etc.)](#encoder-decoder-models-bart-t5-etc)
- [Installing from source](#installing-from-source)
- [Additional options](#additional-options)
* [Dark / light mode](#dark--light-mode)
* [Filtering layers](#filtering-layers)
* [Setting default layer/head(s)](#setting-default-layer-head-s)
* [Visualizing sentence pairs](#visualizing-sentence-pairs)
* [Obtain HTML representations](#obtain-HTML-representations)
* [Non-Huggingface models](#non-huggingface-models)
### Self-attention models (BERT, GPT-2, etc.)
#### Head and Model Views
First load a Huggingface model, either a pre-trained model as shown below, or your own fine-tuned model.
Be sure to set `output_attentions=True`.
```python
from transformers import AutoTokenizer, AutoModel, utils
utils.logging.set_verbosity_error() # Suppress standard warnings
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModel.from_pretrained("bert-base-uncased", output_attentions=True)
```
Then prepare inputs and compute attention:
```python
inputs = tokenizer.encode("The cat sat on the mat", return_tensors='pt')
outputs = model(inputs)
attention = outputs[-1] # Output includes attention weights when output_attentions=True
tokens = tokenizer.convert_ids_to_tokens(inputs[0])
```
Finally, display the attention weights using the [`head_view`](bertviz/head_view.py) or [`model_view`](bertviz/model_view.py)
functions:
```python
from bertviz import head_view
head_view(attention, tokens)
```
<b>Examples</b>: DistilBERT ([Model View Notebook](notebooks/model_view_distilbert.ipynb), [Head View Notebook](notebooks/head_view_distilbert.ipynb))
For full API, please refer to the source code for the [head view](bertviz/head_view.py) or [model view](bertviz/model_view.py).
#### Neuron View
The neuron view is invoked differently than the head view or model view, due to requiring access to the model's
query/key vectors, which are not returned through the Huggingface API. It is currently limited to custom versions of BERT, GPT-2, and
RoBERTa included with BertViz.
```python
# Import specialized versions of models (that return query/key vectors)
from bertviz.transformers_neuron_view import BertModel, BertTokenizer
from bertviz.neuron_view import show
model_type = 'bert'
model_version = 'bert-base-uncased'
do_lower_case = True
sentence_a = "The cat sat on the mat"
sentence_b = "The cat lay on the rug"
model = BertModel.from_pretrained(model_version, output_attentions=True)
tokenizer = BertTokenizer.from_pretrained(model_version, do_lower_case=do_lower_case)
show(model, model_type, tokenizer, sentence_a, sentence_b, layer=2, head=0)
```
<b>Examples</b>:
BERT ([Notebook](notebooks/neuron_view_bert.ipynb),
[Colab](https://colab.research.google.com/drive/1m37iotFeubMrp9qIf9yscXEL1zhxTN2b)) •
GPT-2 ([Notebook](notebooks/neuron_view_gpt2.ipynb),
[Colab](https://colab.research.google.com/drive/1s8XCCyxsKvNRWNzjWi5Nl8ZAYZ5YkLm_)) •
RoBERTa
([Notebook](notebooks/neuron_view_roberta.ipynb))
For full API, please refer to the [source](bertviz/neuron_view.py).
### Encoder-decoder models (BART, T5, etc.)
The head view and model view both support encoder-decoder models.
First, load an encoder-decoder model:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
model = AutoModel.from_pretrained("Helsinki-NLP/opus-mt-en-de", output_attentions=True)
```
Then prepare the inputs and compute attention:
```python
encoder_input_ids = tokenizer("She sees the small elephant.", return_tensors="pt", add_special_tokens=True).input_ids
decoder_input_ids = tokenizer("Sie sieht den kleinen Elefanten.", return_tensors="pt", add_special_tokens=True).input_ids
outputs = model(input_ids=encoder_input_ids, decoder_input_ids=decoder_input_ids)
encoder_text = tokenizer.convert_ids_to_tokens(encoder_input_ids[0])
decoder_text = tokenizer.convert_ids_to_tokens(decoder_input_ids[0])
```
Finally, display the visualization using either [`head_view`](bertviz/head_view.py) or [`model_view`](bertviz/model_view.py).
```python
from bertviz import model_view
model_view(
encoder_attention=outputs.encoder_attentions,
decoder_attention=outputs.decoder_attentions,
cross_attention=outputs.cross_attentions,
encoder_tokens= encoder_text,
decoder_tokens = decoder_text
)
```
You may select `Encoder`, `Decoder`, or `Cross` attention from the drop-down in the upper left corner of the visualization.
<b>Examples</b>: MarianMT ([Notebook](notebooks/model_view_encoder_decoder.ipynb)) • BART ([Notebook](notebooks/model_view_bart.ipynb))
For full API, please refer to the source code for the [head view](bertviz/head_view.py) or [model view](bertviz/model_view.py).
### Installing from source
```bash
git clone https://github.com/jessevig/bertviz.git
cd bertviz
python setup.py develop
```
### Additional options
#### Dark / light mode
The model view and neuron view support dark (default) and light modes. You may set the mode using
the `display_mode` parameter:
```python
model_view(attention, tokens, display_mode="light")
```
#### Filtering layers
To improve the responsiveness of the tool when visualizing larger models or inputs, you may set the `include_layers`
parameter to restrict the visualization to a subset of layers (zero-indexed). This option is available in the head view and model
view.
**Example:** Render model view with only layers 5 and 6 displayed
```python
model_view(attention, tokens, include_layers=[5, 6])
```
For the model view, you may also restrict the visualization to a subset of attention heads (zero-indexed) by setting the
`include_heads` parameter.
#### Setting default layer/head(s)
In the head view, you may choose a specific `layer` and collection of `heads` as the default selection when the
visualization first renders. Note: this is different from the `include_heads`/`include_layers` parameter (above), which
removes layers and heads from the visualization completely.
**Example:** Render head view with layer 2 and heads 3 and 5 pre-selected
```python
head_view(attention, tokens, layer=2, heads=[3,5])
```
You may also pre-select a specific `layer` and single `head` for the neuron view.
#### Visualizing sentence pairs
Some models, e.g. BERT, accept a pair of sentences as input. BertViz optionally supports a drop-down menu that allows
user to filter attention based on which sentence the tokens are in, e.g. only show attention between tokens in first
sentence and tokens in second sentence.
##### Head and model views
To enable this feature when invoking the [`head_view`](bertviz/head_view.py) or [`model_view`](bertviz/model_view.py) functions, set
the `sentence_b_start` parameter to the start index of the second sentence. Note that the method for computing this
index will depend on the model.
Example (BERT):
```python
from bertviz import head_view
from transformers import AutoTokenizer, AutoModel, utils
utils.logging.set_verbosity_error() # Suppress standard warnings
# NOTE: This code is model-specific
model_version = 'bert-base-uncased'
model = AutoModel.from_pretrained(model_version, output_attentions=True)
tokenizer = AutoTokenizer.from_pretrained(model_version)
sentence_a = "the rabbit quickly hopped"
sentence_b = "The turtle slowly crawled"
inputs = tokenizer.encode_plus(sentence_a, sentence_b, return_tensors='pt')
input_ids = inputs['input_ids']
token_type_ids = inputs['token_type_ids'] # token type id is 0 for Sentence A and 1 for Sentence B
attention = model(input_ids, token_type_ids=token_type_ids)[-1]
sentence_b_start = token_type_ids[0].tolist().index(1) # Sentence B starts at first index of token type id 1
token_ids = input_ids[0].tolist() # Batch index 0
tokens = tokenizer.convert_ids_to_tokens(token_ids)
head_view(attention, tokens, sentence_b_start)
```
##### Neuron view
To enable this option in the neuron view, simply set the `sentence_a` and `sentence_b` parameters in [`neuron_view.show()`](bertviz/neuron_view.py).
#### Obtain HTML representations
Support to retrieve the generated HTML representations has been added to head_view, model_view and neuron_view.
Setting the 'html_action' parameter to 'return' will make the function call return a single HTML Python object that can be further processed. Remember you can access the HTML source using the data attribute of a Python HTML object.
The default behavior for 'html_action' is 'view', which will display the visualization but won't return the HTML object.
This functionality is useful if you need to:
- Save the representation as an independent HTML file that can be accessed via web browser
- Use custom display methods as the ones needed in Databricks to visualize HTML objects
Example (head and model views):
```python
from transformers import AutoTokenizer, AutoModel, utils
from bertviz import head_view
utils.logging.set_verbosity_error() # Suppress standard warnings
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModel.from_pretrained("bert-base-uncased", output_attentions=True)
inputs = tokenizer.encode("The cat sat on the mat", return_tensors='pt')
outputs = model(inputs)
attention = outputs[-1] # Output includes attention weights when output_attentions=True
tokens = tokenizer.convert_ids_to_tokens(inputs[0])
html_head_view = head_view(attention, tokens, html_action='return')
with open("PATH_TO_YOUR_FILE/head_view.html", 'w') as file:
file.write(html_head_view.data)
```
Example (neuron view):
```python
# Import specialized versions of models (that return query/key vectors)
from bertviz.transformers_neuron_view import BertModel, BertTokenizer
from bertviz.neuron_view import show
model_type = 'bert'
model_version = 'bert-base-uncased'
do_lower_case = True
sentence_a = "The cat sat on the mat"
sentence_b = "The cat lay on the rug"
model = BertModel.from_pretrained(model_version, output_attentions=True)
tokenizer = BertTokenizer.from_pretrained(model_version, do_lower_case=do_lower_case)
html_neuron_view = show(model, model_type, tokenizer, sentence_a, sentence_b, layer=2, head=0, html_action='return')
with open("PATH_TO_YOUR_FILE/neuron_view.html", 'w') as file:
file.write(html_neuron_view.data)
```
#### Non-Huggingface models
The head view and model view may be used to
visualize self-attention for any standard Transformer model,
as long as the attention weights are available and follow the format specified in [`head_view`](bertviz/head_view.py) and
[`model_view`](bertviz/model_view.py) (which is the format
returned from Huggingface models). In some case, Tensorflow checkpoints may be loaded as Huggingface models as described
in the
[Huggingface docs](https://huggingface.co/transformers/).
## ⚠️ Limitations
### Tool
* This tool is designed for shorter inputs and may run slowly if the input text is very long and/or the model is very large.
To mitigate this, you may wish to filter the layers displayed by setting the **`include_layers`** parameter, as described [above](#filtering-layers).
* When running on Colab, some of the visualizations will fail (runtime disconnection) when the input text is long. To mitigate this, you may wish to filter the layers displayed by setting the **`include_layers`** parameter, as described [above](#filtering-layers).
* The *neuron view* only supports the custom BERT, GPT-2, and RoBERTa models included with the tool. This view needs access to the query and key vectors,
which required modifying the model code (see `transformers_neuron_view` directory), which has only been done for these three models.
### Attention as "explanation"?
* Visualizing attention weights illuminates one type of architecture within the model but does not
necessarily provide a direct *explanation* for predictions [[1](https://arxiv.org/pdf/1909.11218.pdf), [2](https://arxiv.org/abs/1902.10186), [3](https://arxiv.org/pdf/1908.04626.pdf)].
* If you wish to understand how the input text influences output predictions more directly, consider [saliency methods](https://arxiv.org/pdf/2010.05607.pdf) provided
by tools such as the [Language Interpretability Toolkit](https://github.com/PAIR-code/lit) or [Ecco](https://github.com/jalammar/ecco).
## 🔬 Paper
[<b>A Multiscale Visualization of Attention in the Transformer Model</b>](https://www.aclweb.org/anthology/P19-3007.pdf) (ACL System Demonstrations 2019).
### Citation
```bibtex
@inproceedings{vig-2019-multiscale,
title = "A Multiscale Visualization of Attention in the Transformer Model",
author = "Vig, Jesse",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P19-3007",
doi = "10.18653/v1/P19-3007",
pages = "37--42",
}
```
## Authors
Jesse Vig [(homepage)](https://jessevig.com)
## 🙏 Acknowledgments
We are grateful to the authors of the following projects, which are incorporated into this repo:
* https://github.com/tensorflow/tensor2tensor
* https://github.com/huggingface/pytorch-pretrained-BERT
## License
This project is licensed under the Apache 2.0 License - see the [LICENSE](LICENSE) file for details
%prep
%autosetup -n bertviz-1.4.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-bertviz -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed May 31 2023 Python_Bot <Python_Bot@openeuler.org> - 1.4.0-1
- Package Spec generated
|