1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
|
%global _empty_manifest_terminate_build 0
Name: python-bicm
Version: 3.0.3
Release: 1
Summary: Package for bipartite configuration model
License: MIT License
URL: https://github.com/mat701/BiCM
Source0: https://mirrors.aliyun.com/pypi/web/packages/3c/96/85d6a05d20c225a0d970ca29265f4d02b52d6981fb917822bf7bff7f2899/bicm-3.0.3.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-tqdm
Requires: python3-numba
%description
## BiCM package
This is a Python package for the computation of the maximum entropy bipartite configuration model (BiCM) and the projection of bipartite networks on one layer. It was developed with Python 3.5.
You can install this package via pip:
pip install bicm
Documentation is available at https://bipartite-configuration-model.readthedocs.io/en/latest/ .
This package is also a module of NEMtropy that you can find at https://github.com/nicoloval/NEMtropy .
For more solvers of maximum entropy configuration models visit https://meh.imtlucca.it/ .
## Basic functionalities
To install:
pip install bicm
To import the module:
import bicm
To generate a Graph object and initialize it (with a biadjacency matrix, edgelist or degree sequences):
from bicm import BipartiteGraph
myGraph = BipartiteGraph()
myGraph.set_biadjacency_matrix(my_biadjacency_matrix)
myGraph.set_adjacency_list(my_adjacency_list)
myGraph.set_edgelist(my_edgelist)
myGraph.set_degree_sequences((first_degree_sequence, second_degree_sequence))
Or alternatively, with the respective data structure as input:
from bicm import BipartiteGraph
myGraph = BipartiteGraph(biadjacency=my_biadjacency_matrix, adjacency_list=my_adjacency_list, edgelist=my_edgelist, degree_sequences=((first_degree_sequence, second_degree_sequence)))
To compute the BiCM probability matrix of the graph or the relative fitnesses coefficients as dictionaries containing the nodes names as keys:
my_probability_matrix = myGraph.get_bicm_matrix()
my_x, my_y = myGraph.get_bicm_fitnesses()
This will solve the bicm using recommended settings for the solver.
To customize the solver you can alternatively use (in advance) the following method:
myGraph.solve_tool(light_mode=False, method='newton', initial_guess=None, tolerance=1e-8, max_steps=None, verbose=False, linsearch=True, regularise=False, print_error=True, exp=False)
To get the rows or columns projection of the graph:
myGraph.get_rows_projection()
myGraph.get_cols_projection()
Alternatively, to customize the projection:
myGraph.compute_projection(rows=True, alpha=0.05, method='poisson', threads_num=4, progress_bar=True)
Now version 3.0.0 is online, and you can use the package with weighted networks as well using the BiWCM models!
See a more detailed walkthrough in **tests/bicm_test** or **tests/biwcm_test** notebooks, or check out the API in the documentation.
## How to cite
If you use the `bicm` module, please cite its location on Github
[https://github.com/mat701/BiCM](https://github.com/mat701/BiCM) and the
original articles [Vallarano2021], [Saracco2015] and [Saracco2017].
If you use the weighted models BiWCM_c or BiMCM you might consider citing also the following paper introducing the solvers of this package:
* Bruno, M., Mazzilli, D., Patelli, A., Squartini, T., and Saracco, F. \
*Inferring comparative advantage via entropy maximization.* \
In preparation
### References
[Vallarano2021] [N. Vallarano, M. Bruno, E. Marchese, G. Trapani, F. Saracco, T. Squartini, G. Cimini, M. Zanon, Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints, Nature Scientific Reports](https://doi.org/10.1038/s41598-021-93830-4)
[Saracco2015] [F. Saracco, R. Di Clemente, A. Gabrielli, T. Squartini, Randomizing bipartite networks: the case of the World Trade Web, Scientific Reports 5, 10595 (2015)](http://www.nature.com/articles/srep10595).
[Saracco2017] [F. Saracco, M. J. Straka, R. Di Clemente, A. Gabrielli, G. Caldarelli, and T. Squartini, Inferring monopartite projections of bipartite networks: an entropy-based approach, New J. Phys. 19, 053022 (2017)](http://stacks.iop.org/1367-2630/19/i=5/a=053022)
_Author_:
[Matteo Bruno](https://csl.sony.it/member/matteo-bruno/) (BiCM) (a.k.a. [mat701](https://github.com/mat701))
%package -n python3-bicm
Summary: Package for bipartite configuration model
Provides: python-bicm
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-bicm
## BiCM package
This is a Python package for the computation of the maximum entropy bipartite configuration model (BiCM) and the projection of bipartite networks on one layer. It was developed with Python 3.5.
You can install this package via pip:
pip install bicm
Documentation is available at https://bipartite-configuration-model.readthedocs.io/en/latest/ .
This package is also a module of NEMtropy that you can find at https://github.com/nicoloval/NEMtropy .
For more solvers of maximum entropy configuration models visit https://meh.imtlucca.it/ .
## Basic functionalities
To install:
pip install bicm
To import the module:
import bicm
To generate a Graph object and initialize it (with a biadjacency matrix, edgelist or degree sequences):
from bicm import BipartiteGraph
myGraph = BipartiteGraph()
myGraph.set_biadjacency_matrix(my_biadjacency_matrix)
myGraph.set_adjacency_list(my_adjacency_list)
myGraph.set_edgelist(my_edgelist)
myGraph.set_degree_sequences((first_degree_sequence, second_degree_sequence))
Or alternatively, with the respective data structure as input:
from bicm import BipartiteGraph
myGraph = BipartiteGraph(biadjacency=my_biadjacency_matrix, adjacency_list=my_adjacency_list, edgelist=my_edgelist, degree_sequences=((first_degree_sequence, second_degree_sequence)))
To compute the BiCM probability matrix of the graph or the relative fitnesses coefficients as dictionaries containing the nodes names as keys:
my_probability_matrix = myGraph.get_bicm_matrix()
my_x, my_y = myGraph.get_bicm_fitnesses()
This will solve the bicm using recommended settings for the solver.
To customize the solver you can alternatively use (in advance) the following method:
myGraph.solve_tool(light_mode=False, method='newton', initial_guess=None, tolerance=1e-8, max_steps=None, verbose=False, linsearch=True, regularise=False, print_error=True, exp=False)
To get the rows or columns projection of the graph:
myGraph.get_rows_projection()
myGraph.get_cols_projection()
Alternatively, to customize the projection:
myGraph.compute_projection(rows=True, alpha=0.05, method='poisson', threads_num=4, progress_bar=True)
Now version 3.0.0 is online, and you can use the package with weighted networks as well using the BiWCM models!
See a more detailed walkthrough in **tests/bicm_test** or **tests/biwcm_test** notebooks, or check out the API in the documentation.
## How to cite
If you use the `bicm` module, please cite its location on Github
[https://github.com/mat701/BiCM](https://github.com/mat701/BiCM) and the
original articles [Vallarano2021], [Saracco2015] and [Saracco2017].
If you use the weighted models BiWCM_c or BiMCM you might consider citing also the following paper introducing the solvers of this package:
* Bruno, M., Mazzilli, D., Patelli, A., Squartini, T., and Saracco, F. \
*Inferring comparative advantage via entropy maximization.* \
In preparation
### References
[Vallarano2021] [N. Vallarano, M. Bruno, E. Marchese, G. Trapani, F. Saracco, T. Squartini, G. Cimini, M. Zanon, Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints, Nature Scientific Reports](https://doi.org/10.1038/s41598-021-93830-4)
[Saracco2015] [F. Saracco, R. Di Clemente, A. Gabrielli, T. Squartini, Randomizing bipartite networks: the case of the World Trade Web, Scientific Reports 5, 10595 (2015)](http://www.nature.com/articles/srep10595).
[Saracco2017] [F. Saracco, M. J. Straka, R. Di Clemente, A. Gabrielli, G. Caldarelli, and T. Squartini, Inferring monopartite projections of bipartite networks: an entropy-based approach, New J. Phys. 19, 053022 (2017)](http://stacks.iop.org/1367-2630/19/i=5/a=053022)
_Author_:
[Matteo Bruno](https://csl.sony.it/member/matteo-bruno/) (BiCM) (a.k.a. [mat701](https://github.com/mat701))
%package help
Summary: Development documents and examples for bicm
Provides: python3-bicm-doc
%description help
## BiCM package
This is a Python package for the computation of the maximum entropy bipartite configuration model (BiCM) and the projection of bipartite networks on one layer. It was developed with Python 3.5.
You can install this package via pip:
pip install bicm
Documentation is available at https://bipartite-configuration-model.readthedocs.io/en/latest/ .
This package is also a module of NEMtropy that you can find at https://github.com/nicoloval/NEMtropy .
For more solvers of maximum entropy configuration models visit https://meh.imtlucca.it/ .
## Basic functionalities
To install:
pip install bicm
To import the module:
import bicm
To generate a Graph object and initialize it (with a biadjacency matrix, edgelist or degree sequences):
from bicm import BipartiteGraph
myGraph = BipartiteGraph()
myGraph.set_biadjacency_matrix(my_biadjacency_matrix)
myGraph.set_adjacency_list(my_adjacency_list)
myGraph.set_edgelist(my_edgelist)
myGraph.set_degree_sequences((first_degree_sequence, second_degree_sequence))
Or alternatively, with the respective data structure as input:
from bicm import BipartiteGraph
myGraph = BipartiteGraph(biadjacency=my_biadjacency_matrix, adjacency_list=my_adjacency_list, edgelist=my_edgelist, degree_sequences=((first_degree_sequence, second_degree_sequence)))
To compute the BiCM probability matrix of the graph or the relative fitnesses coefficients as dictionaries containing the nodes names as keys:
my_probability_matrix = myGraph.get_bicm_matrix()
my_x, my_y = myGraph.get_bicm_fitnesses()
This will solve the bicm using recommended settings for the solver.
To customize the solver you can alternatively use (in advance) the following method:
myGraph.solve_tool(light_mode=False, method='newton', initial_guess=None, tolerance=1e-8, max_steps=None, verbose=False, linsearch=True, regularise=False, print_error=True, exp=False)
To get the rows or columns projection of the graph:
myGraph.get_rows_projection()
myGraph.get_cols_projection()
Alternatively, to customize the projection:
myGraph.compute_projection(rows=True, alpha=0.05, method='poisson', threads_num=4, progress_bar=True)
Now version 3.0.0 is online, and you can use the package with weighted networks as well using the BiWCM models!
See a more detailed walkthrough in **tests/bicm_test** or **tests/biwcm_test** notebooks, or check out the API in the documentation.
## How to cite
If you use the `bicm` module, please cite its location on Github
[https://github.com/mat701/BiCM](https://github.com/mat701/BiCM) and the
original articles [Vallarano2021], [Saracco2015] and [Saracco2017].
If you use the weighted models BiWCM_c or BiMCM you might consider citing also the following paper introducing the solvers of this package:
* Bruno, M., Mazzilli, D., Patelli, A., Squartini, T., and Saracco, F. \
*Inferring comparative advantage via entropy maximization.* \
In preparation
### References
[Vallarano2021] [N. Vallarano, M. Bruno, E. Marchese, G. Trapani, F. Saracco, T. Squartini, G. Cimini, M. Zanon, Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints, Nature Scientific Reports](https://doi.org/10.1038/s41598-021-93830-4)
[Saracco2015] [F. Saracco, R. Di Clemente, A. Gabrielli, T. Squartini, Randomizing bipartite networks: the case of the World Trade Web, Scientific Reports 5, 10595 (2015)](http://www.nature.com/articles/srep10595).
[Saracco2017] [F. Saracco, M. J. Straka, R. Di Clemente, A. Gabrielli, G. Caldarelli, and T. Squartini, Inferring monopartite projections of bipartite networks: an entropy-based approach, New J. Phys. 19, 053022 (2017)](http://stacks.iop.org/1367-2630/19/i=5/a=053022)
_Author_:
[Matteo Bruno](https://csl.sony.it/member/matteo-bruno/) (BiCM) (a.k.a. [mat701](https://github.com/mat701))
%prep
%autosetup -n bicm-3.0.3
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-bicm -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 3.0.3-1
- Package Spec generated
|