summaryrefslogtreecommitdiff
path: root/python-biolearns.spec
blob: 4b8b7a6f4b153c1ec71a31a8a16fb7a260f7d393 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
%global _empty_manifest_terminate_build 0
Name:		python-biolearns
Version:	0.0.62
Release:	1
Summary:	BioLearns: Computational Biology and Bioinformatics Toolbox in Python
License:	MIT License
URL:		https://pypi.org/project/biolearns/
Source0:	https://mirrors.aliyun.com/pypi/web/packages/e2/22/55d18231c9d8cf773852fd9f52167bbdaa015f479ec33508a664a1fa9c51/biolearns-0.0.62.tar.gz
BuildArch:	noarch


%description
# biolearns
BioLearns: Computational Biology and Bioinformatics Toolbox in Python http://biolearns.medicine.iu.edu

<div style="text-align:center"><img src="figures/logo.png" width=300/></div>

[![license](https://img.shields.io/github/license/mashape/apistatus.svg?maxAge=2592000)](https://github.com/huangzhii/biolearns/blob/master/LICENSE)

## Installation

* From PyPI

```bash
pip install biolearns -U
```

## Documentation and Tutorials

* We select three examples listed below. For full list of tutorial, check our github wiki page:

    [Wiki](https://github.com/huangzhii/biolearns/wiki)

## Disclaimer
Please note that this is a pre-release version of the BioLearns which is still undergoing final testing before its official release. The website, its software and all content found on it are provided on an "as is" and "as available" basis. BioLearns does not give any warranties, whether express or implied, as to the suitability or usability of the website, its software or any of its content. BioLearns will not be liable for any loss, whether such loss is direct, indirect, special or consequential, suffered by any party as a result of their use of the libraries or content. Any usage of the libraries is done at the user's own risk and the user will be solely responsible for any damage to any computer system or loss of data that results from such activities. Should you encounter any bugs, glitches, lack of functionality or other problems on the website, please let us know immediately so we can rectify these accordingly. Your help in this regard is greatly appreciated.



### 1. Read TCGA Data

#### Example: Read TCGA Breast invasive carcinoma (BRCA) data

Data is downloaded directly from https://gdac.broadinstitute.org/.
The results here are in whole or part based upon data generated by 
the TCGA Research Network: https://www.cancer.gov/tcga.

```python
from biolearns.dataset import TCGA
```

```python
brca = TCGA('BRCA')
mRNAseq = brca.mRNAseq
clinical = brca.clinical
```

#### TCGA cancer table shortcut:

|              | Barcode            | Cancer full name         | Version            |
|---|---|---|---|
| 1      |  ACC          |  Adrenocortical carcinoma     | 2016_01_28 |
| 2      |  BLCA         |  Bladder urothelial carcinoma         | 2016_01_28 |
| 3      |  BRCA         |  Breast invasive carcinoma    | 2016_01_28 |
| 4      |  CESC         |  Cervical and endocervical cancers    | 2016_01_28 |
| 5      |  CHOL         |  Cholangiocarcinoma   | 2016_01_28 |
| 6      |  COAD         |  Colon adenocarcinoma         | 2016_01_28 |
| 7      |  COADREAD     |  Colorectal adenocarcinoma    | 2016_01_28 |
| 8      |  DLBC         |  Lymphoid Neoplasm Diffuse Large B-cell Lymphoma      | 2016_01_28 |
| 9      |  ESCA         |  Esophageal carcinoma         | 2016_01_28 |
| ...     |  ...         |  ...          | ... |


### 2. Gene Co-expression Analysis

We firstly download and access the mRNAseq data.
```python
from biolearns.dataset import TCGA

brca = TCGA('BRCA')
mRNAseq = brca.mRNAseq
```

mRNAseq data is noisy. We filter out 50% of genes with lowest mean values, and then filter out 50% remained genes with lowest variance values.

```python
from biolearns.preprocessing import expression_filter
mRNAseq = expression_filter(mRNAseq, meanq = 0.5, varq = 0.5)
```

We then use lmQCM class to create an lmQCM object ```lobj```.

The gene co-expression analysis is performed by simply call the ```fit()``` function.

```python
from biolearns.coexpression import lmQCM

lobj = lmQCM(mRNAseq)
clusters, genes, eigengene_mat = lobj.fit()
```

### 3. Univariate survival analysis

We firstly download and access the mRNAseq data. Use breast cancer as an example.
```python
from biolearns.dataset import TCGA

brca = TCGA('BRCA')
mRNAseq = brca.mRNAseq
```

We import logranktest from survival subpackage. Choose gene "ABLIM3" as the univariate input.
```python
from biolearns.survival import logranktest

r = mRNAseq.loc['ABLIM3',].values
```

We find the intersection of univariate, time, and event data
```python
bcd_m = [b[:12] for b in mRNAseq.columns]
bcd_p = [b[:12] for b in clinical.index]
bcd = np.intersect1d(bcd_m, bcd_p)

r = r[np.nonzero(np.in1d(bcd, bcd_m))[0]]
t = brca.overall_survival_time[np.nonzero(np.in1d(bcd, bcd_p))[0]]
e = brca.overall_survival_event[np.nonzero(np.in1d(bcd, bcd_p))[0]]
```

We perform log-rank test:

```python
logrank_results, fig = logranktest(r[~np.isnan(t)], t[~np.isnan(t)], e[~np.isnan(t)])
test_statistic, p_value = logrank_results.test_statistic, logrank_results.p_value
```

The output figure looks like:

<div style="text-align:center"><img src="https://github.com/huangzhii/biolearns/blob/master/figures/survival_plot_BRCA_ABLIM3.png" width=600/></div>


%package -n python3-biolearns
Summary:	BioLearns: Computational Biology and Bioinformatics Toolbox in Python
Provides:	python-biolearns
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-biolearns
# biolearns
BioLearns: Computational Biology and Bioinformatics Toolbox in Python http://biolearns.medicine.iu.edu

<div style="text-align:center"><img src="figures/logo.png" width=300/></div>

[![license](https://img.shields.io/github/license/mashape/apistatus.svg?maxAge=2592000)](https://github.com/huangzhii/biolearns/blob/master/LICENSE)

## Installation

* From PyPI

```bash
pip install biolearns -U
```

## Documentation and Tutorials

* We select three examples listed below. For full list of tutorial, check our github wiki page:

    [Wiki](https://github.com/huangzhii/biolearns/wiki)

## Disclaimer
Please note that this is a pre-release version of the BioLearns which is still undergoing final testing before its official release. The website, its software and all content found on it are provided on an "as is" and "as available" basis. BioLearns does not give any warranties, whether express or implied, as to the suitability or usability of the website, its software or any of its content. BioLearns will not be liable for any loss, whether such loss is direct, indirect, special or consequential, suffered by any party as a result of their use of the libraries or content. Any usage of the libraries is done at the user's own risk and the user will be solely responsible for any damage to any computer system or loss of data that results from such activities. Should you encounter any bugs, glitches, lack of functionality or other problems on the website, please let us know immediately so we can rectify these accordingly. Your help in this regard is greatly appreciated.



### 1. Read TCGA Data

#### Example: Read TCGA Breast invasive carcinoma (BRCA) data

Data is downloaded directly from https://gdac.broadinstitute.org/.
The results here are in whole or part based upon data generated by 
the TCGA Research Network: https://www.cancer.gov/tcga.

```python
from biolearns.dataset import TCGA
```

```python
brca = TCGA('BRCA')
mRNAseq = brca.mRNAseq
clinical = brca.clinical
```

#### TCGA cancer table shortcut:

|              | Barcode            | Cancer full name         | Version            |
|---|---|---|---|
| 1      |  ACC          |  Adrenocortical carcinoma     | 2016_01_28 |
| 2      |  BLCA         |  Bladder urothelial carcinoma         | 2016_01_28 |
| 3      |  BRCA         |  Breast invasive carcinoma    | 2016_01_28 |
| 4      |  CESC         |  Cervical and endocervical cancers    | 2016_01_28 |
| 5      |  CHOL         |  Cholangiocarcinoma   | 2016_01_28 |
| 6      |  COAD         |  Colon adenocarcinoma         | 2016_01_28 |
| 7      |  COADREAD     |  Colorectal adenocarcinoma    | 2016_01_28 |
| 8      |  DLBC         |  Lymphoid Neoplasm Diffuse Large B-cell Lymphoma      | 2016_01_28 |
| 9      |  ESCA         |  Esophageal carcinoma         | 2016_01_28 |
| ...     |  ...         |  ...          | ... |


### 2. Gene Co-expression Analysis

We firstly download and access the mRNAseq data.
```python
from biolearns.dataset import TCGA

brca = TCGA('BRCA')
mRNAseq = brca.mRNAseq
```

mRNAseq data is noisy. We filter out 50% of genes with lowest mean values, and then filter out 50% remained genes with lowest variance values.

```python
from biolearns.preprocessing import expression_filter
mRNAseq = expression_filter(mRNAseq, meanq = 0.5, varq = 0.5)
```

We then use lmQCM class to create an lmQCM object ```lobj```.

The gene co-expression analysis is performed by simply call the ```fit()``` function.

```python
from biolearns.coexpression import lmQCM

lobj = lmQCM(mRNAseq)
clusters, genes, eigengene_mat = lobj.fit()
```

### 3. Univariate survival analysis

We firstly download and access the mRNAseq data. Use breast cancer as an example.
```python
from biolearns.dataset import TCGA

brca = TCGA('BRCA')
mRNAseq = brca.mRNAseq
```

We import logranktest from survival subpackage. Choose gene "ABLIM3" as the univariate input.
```python
from biolearns.survival import logranktest

r = mRNAseq.loc['ABLIM3',].values
```

We find the intersection of univariate, time, and event data
```python
bcd_m = [b[:12] for b in mRNAseq.columns]
bcd_p = [b[:12] for b in clinical.index]
bcd = np.intersect1d(bcd_m, bcd_p)

r = r[np.nonzero(np.in1d(bcd, bcd_m))[0]]
t = brca.overall_survival_time[np.nonzero(np.in1d(bcd, bcd_p))[0]]
e = brca.overall_survival_event[np.nonzero(np.in1d(bcd, bcd_p))[0]]
```

We perform log-rank test:

```python
logrank_results, fig = logranktest(r[~np.isnan(t)], t[~np.isnan(t)], e[~np.isnan(t)])
test_statistic, p_value = logrank_results.test_statistic, logrank_results.p_value
```

The output figure looks like:

<div style="text-align:center"><img src="https://github.com/huangzhii/biolearns/blob/master/figures/survival_plot_BRCA_ABLIM3.png" width=600/></div>


%package help
Summary:	Development documents and examples for biolearns
Provides:	python3-biolearns-doc
%description help
# biolearns
BioLearns: Computational Biology and Bioinformatics Toolbox in Python http://biolearns.medicine.iu.edu

<div style="text-align:center"><img src="figures/logo.png" width=300/></div>

[![license](https://img.shields.io/github/license/mashape/apistatus.svg?maxAge=2592000)](https://github.com/huangzhii/biolearns/blob/master/LICENSE)

## Installation

* From PyPI

```bash
pip install biolearns -U
```

## Documentation and Tutorials

* We select three examples listed below. For full list of tutorial, check our github wiki page:

    [Wiki](https://github.com/huangzhii/biolearns/wiki)

## Disclaimer
Please note that this is a pre-release version of the BioLearns which is still undergoing final testing before its official release. The website, its software and all content found on it are provided on an "as is" and "as available" basis. BioLearns does not give any warranties, whether express or implied, as to the suitability or usability of the website, its software or any of its content. BioLearns will not be liable for any loss, whether such loss is direct, indirect, special or consequential, suffered by any party as a result of their use of the libraries or content. Any usage of the libraries is done at the user's own risk and the user will be solely responsible for any damage to any computer system or loss of data that results from such activities. Should you encounter any bugs, glitches, lack of functionality or other problems on the website, please let us know immediately so we can rectify these accordingly. Your help in this regard is greatly appreciated.



### 1. Read TCGA Data

#### Example: Read TCGA Breast invasive carcinoma (BRCA) data

Data is downloaded directly from https://gdac.broadinstitute.org/.
The results here are in whole or part based upon data generated by 
the TCGA Research Network: https://www.cancer.gov/tcga.

```python
from biolearns.dataset import TCGA
```

```python
brca = TCGA('BRCA')
mRNAseq = brca.mRNAseq
clinical = brca.clinical
```

#### TCGA cancer table shortcut:

|              | Barcode            | Cancer full name         | Version            |
|---|---|---|---|
| 1      |  ACC          |  Adrenocortical carcinoma     | 2016_01_28 |
| 2      |  BLCA         |  Bladder urothelial carcinoma         | 2016_01_28 |
| 3      |  BRCA         |  Breast invasive carcinoma    | 2016_01_28 |
| 4      |  CESC         |  Cervical and endocervical cancers    | 2016_01_28 |
| 5      |  CHOL         |  Cholangiocarcinoma   | 2016_01_28 |
| 6      |  COAD         |  Colon adenocarcinoma         | 2016_01_28 |
| 7      |  COADREAD     |  Colorectal adenocarcinoma    | 2016_01_28 |
| 8      |  DLBC         |  Lymphoid Neoplasm Diffuse Large B-cell Lymphoma      | 2016_01_28 |
| 9      |  ESCA         |  Esophageal carcinoma         | 2016_01_28 |
| ...     |  ...         |  ...          | ... |


### 2. Gene Co-expression Analysis

We firstly download and access the mRNAseq data.
```python
from biolearns.dataset import TCGA

brca = TCGA('BRCA')
mRNAseq = brca.mRNAseq
```

mRNAseq data is noisy. We filter out 50% of genes with lowest mean values, and then filter out 50% remained genes with lowest variance values.

```python
from biolearns.preprocessing import expression_filter
mRNAseq = expression_filter(mRNAseq, meanq = 0.5, varq = 0.5)
```

We then use lmQCM class to create an lmQCM object ```lobj```.

The gene co-expression analysis is performed by simply call the ```fit()``` function.

```python
from biolearns.coexpression import lmQCM

lobj = lmQCM(mRNAseq)
clusters, genes, eigengene_mat = lobj.fit()
```

### 3. Univariate survival analysis

We firstly download and access the mRNAseq data. Use breast cancer as an example.
```python
from biolearns.dataset import TCGA

brca = TCGA('BRCA')
mRNAseq = brca.mRNAseq
```

We import logranktest from survival subpackage. Choose gene "ABLIM3" as the univariate input.
```python
from biolearns.survival import logranktest

r = mRNAseq.loc['ABLIM3',].values
```

We find the intersection of univariate, time, and event data
```python
bcd_m = [b[:12] for b in mRNAseq.columns]
bcd_p = [b[:12] for b in clinical.index]
bcd = np.intersect1d(bcd_m, bcd_p)

r = r[np.nonzero(np.in1d(bcd, bcd_m))[0]]
t = brca.overall_survival_time[np.nonzero(np.in1d(bcd, bcd_p))[0]]
e = brca.overall_survival_event[np.nonzero(np.in1d(bcd, bcd_p))[0]]
```

We perform log-rank test:

```python
logrank_results, fig = logranktest(r[~np.isnan(t)], t[~np.isnan(t)], e[~np.isnan(t)])
test_statistic, p_value = logrank_results.test_statistic, logrank_results.p_value
```

The output figure looks like:

<div style="text-align:center"><img src="https://github.com/huangzhii/biolearns/blob/master/figures/survival_plot_BRCA_ABLIM3.png" width=600/></div>


%prep
%autosetup -n biolearns-0.0.62

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-biolearns -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.62-1
- Package Spec generated