summaryrefslogtreecommitdiff
path: root/python-botok.spec
blob: cd1e431fcf8e3917640478af1e377705a3d45212 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
%global _empty_manifest_terminate_build 0
Name:		python-botok
Version:	0.8.10
Release:	1
Summary:	Tibetan Word Tokenizer
License:	Apache2
URL:		https://github.com/Esukhia/botok
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/c8/85/1b50310c701cfe3634d72122f177f1e30a1625225243815c8ff1c3234844/botok-0.8.10.tar.gz
BuildArch:	noarch

Requires:	python3-pyyaml
Requires:	python3-requests

%description
# botok – Python Tibetan Tokenizer
![GitHub release](https://img.shields.io/github/release/Esukhia/botok.svg) [![Documentation Status](https://readthedocs.org/projects/botok/badge/?version=latest)](https://botok.readthedocs.io/en/latest/?badge=latest) [![Build Status](https://travis-ci.org/Esukhia/botok.svg?branch=master)](https://travis-ci.org/Esukhia/botok) [![Coverage Status](https://coveralls.io/repos/github/Esukhia/botok/badge.svg?branch=master)](https://coveralls.io/github/Esukhia/botok?branch=master)   [![CodeFactor](https://www.codefactor.io/repository/github/esukhia/botok/badge)](https://www.codefactor.io/repository/github/esukhia/botok) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://black.readthedocs.io/en/stable/)


## Overview

botok tokenizes Tibetan text into words.

### Basic usage

#### Getting started
Requires to have Python3 installed.

    pip3 install botok

```python
>>> from botok import Text

>>> # input is a multi-line input string
>>> in_str = """ལེ གས། བཀྲ་ཤིས་མཐའི་ ༆ ཤི་བཀྲ་ཤིས་  tr 
... བདེ་་ལེ གས། བཀྲ་ཤིས་བདེ་ལེགས་༡༢༣ཀཀ། 
... མཐའི་རྒྱ་མཚོར་གནས་པའི་ཉས་ཆུ་འཐུང་།། །།མཁའ།"""


### STEP1: instanciating Text

>>> # A. on a string
>>> t = Text(in_str)

>>> # B. on a file
... # note all following operations can be applied to files in this way.
>>> from pathlib import Path
>>> in_file = Path.cwd() / 'test.txt'

>>> # file content:
>>> in_file.read_text()
'བཀྲ་ཤིས་བདེ་ལེགས།།\n'

>>> t = Text(in_file)
>>> t.tokenize_chunks_plaintext

>>> # checking an output file has been written:
... # BOM is added by default so that notepad in Windows doesn't scramble the line breaks
>>> out_file = Path.cwd() / 'test_pybo.txt'
>>> out_file.read_text()
'\ufeffབཀྲ་ ཤིས་ བདེ་ ལེགས །།'

### STEP2: properties will perform actions on the input string:
### note: original spaces are replaced by underscores.

>>> # OUTPUT1: chunks are meaningful groups of chars from the input string.
... # see how punctuations, numerals, non-bo and syllables are all neatly grouped.
>>> t.tokenize_chunks_plaintext
'ལེ_གས །_ བཀྲ་ ཤིས་ མཐའི་ _༆_ ཤི་ བཀྲ་ ཤིས་__ tr_\n བདེ་་ ལེ_གས །_ བཀྲ་ ཤིས་ བདེ་ ལེགས་ ༡༢༣ ཀཀ །_\n མཐའི་ རྒྱ་ མཚོར་ གནས་ པའི་ ཉས་ ཆུ་ འཐུང་ །།_།། མཁའ །'

>>> # OUTPUT2: could as well be acheived by in_str.split(' ')
>>> t.tokenize_on_spaces
'ལེ གས། བཀྲ་ཤིས་མཐའི་ ༆ ཤི་བཀྲ་ཤིས་ tr བདེ་་ལེ གས། བཀྲ་ཤིས་བདེ་ལེགས་༡༢༣ཀཀ། མཐའི་རྒྱ་མཚོར་གནས་པའི་ཉས་ཆུ་འཐུང་།། །།མཁའ།'

>>> # OUTPUT3: segments in words.
... # see how བདེ་་ལེ_གས was still recognized as a single word, even with the space and the double tsek.
... # the affixed particles are separated from the hosting word: མཐ འི་ རྒྱ་མཚོ ར་ གནས་པ འི་ ཉ ས་
>>> t.tokenize_words_raw_text
Loading Trie... (2s.)
'ལེ_གས །_ བཀྲ་ཤིས་ མཐ འི་ _༆_ ཤི་ བཀྲ་ཤིས་_ tr_ བདེ་་ལེ_གས །_ བཀྲ་ཤིས་ བདེ་ལེགས་ ༡༢༣ ཀཀ །_ མཐ འི་ རྒྱ་མཚོ ར་ གནས་པ འི་ ཉ ས་ ཆུ་ འཐུང་ །།_།། མཁའ །'
>>> t.tokenize_words_raw_lines
'ལེ_གས །_ བཀྲ་ཤིས་ མཐ འི་ _༆_ ཤི་ བཀྲ་ཤིས་__ tr_\n བདེ་་ལེ_གས །_ བཀྲ་ཤིས་ བདེ་ལེགས་ ༡༢༣ ཀཀ །_\n མཐ འི་ རྒྱ་མཚོ ར་ གནས་པ འི་ ཉ ས་ ཆུ་ འཐུང་ །།_།། མཁའ །'

>>> # OUTPUT4: segments in words, then calculates the number of occurences of each word found
... # by default, it counts in_str's substrings in the output, which is why we have བདེ་་ལེ གས	1, བདེ་ལེགས་	1
... # this behaviour can easily be modified to take into account the words that pybo recognized instead (see advanced usage)
>>> print(t.list_word_types)
འི་	3
། 	2
བཀྲ་ཤིས་	2
མཐ	2
ལེ གས	1
 ༆ 	1
ཤི་	1
བཀྲ་ཤིས་  	1
tr \n	1
བདེ་་ལེ གས	1
བདེ་ལེགས་	1
༡༢༣	1
ཀཀ	1
། \n	1
རྒྱ་མཚོ	1
ར་	1
གནས་པ	1
ཉ	1
ས་	1
ཆུ་	1
འཐུང་	1
།། །།	1
མཁའ	1
།	1
```

##### Custom dialect pack:

In order to use custom dialect pack:

- You need to prepare your dialect pack in same folder structure like [general dialect pack](https://github.com/Esukhia/botok-data/tree/master/dialect_packs/general)
- Then you need to instaintiate a config object where you will pass dialect name and path
- You can instaintiate your tokenizer object using that config object
- Your tokenizer will be using your custom dialect pack and it will be using trie pickled file in future to build the custom trie.

###### Example
```
from botok import WordTokenizer
from botok.config import Config
from pathlib import Path

def get_tokens(wt, text):
    tokens = wt.tokenize(text, split_affixes=False)
    return tokens

if __name__ == "__main__":
    config = Config(dialect_name="custom", base_path= Path.home())
    wt = WordTokenizer(config=config)
    text = "བཀྲ་ཤིས་བདེ་ལེགས་ཞུས་རྒྱུ་ཡིན་ སེམས་པ་སྐྱིད་པོ་འདུག།"
    tokens = get_tokens(wt, text)
    for token in tokens:
        print(token)
```


https://user-images.githubusercontent.com/24893704/148767959-31cc0a69-4c83-4841-8a1d-028d376e4677.mp4



## Acknowledgements

**botok** is an open source library for Tibetan NLP.

We are always open to cooperation in introducing new features, tool integrations and testing solutions.

Many thanks to the companies and organizations who have supported botok's development, especially:

* [Khyentse Foundation](https://khyentsefoundation.org) for contributing USD22,000 to kickstart the project 
* The [Barom/Esukhia canon project](http://www.barom.org) for sponsoring training data curation
* [BDRC](https://tbrc.org) for contributing 2 staff for 6 months for data curation

## Maintainance

Build the source dist:

```
rm -rf dist/
python3 setup.py clean sdist
```

and upload on twine (version >= `1.11.0`) with:

```
twine upload dist/*
```

## License

The Python code is Copyright (C) 2019 Esukhia, provided under [Apache 2](LICENSE). 

contributors:
 * [Drupchen](https://github.com/drupchen)
 * [Élie Roux](https://github.com/eroux)
 * [Ngawang Trinley](https://github.com/ngawangtrinley)
 * [Mikko Kotila](https://github.com/mikkokotila)
 * [Thubten Rinzin](https://github.com/thubtenrigzin)

 * [Tenzin](https://github.com/10zinten)
 * Joyce Mackzenzie for reworking the logo




%package -n python3-botok
Summary:	Tibetan Word Tokenizer
Provides:	python-botok
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-botok
# botok – Python Tibetan Tokenizer
![GitHub release](https://img.shields.io/github/release/Esukhia/botok.svg) [![Documentation Status](https://readthedocs.org/projects/botok/badge/?version=latest)](https://botok.readthedocs.io/en/latest/?badge=latest) [![Build Status](https://travis-ci.org/Esukhia/botok.svg?branch=master)](https://travis-ci.org/Esukhia/botok) [![Coverage Status](https://coveralls.io/repos/github/Esukhia/botok/badge.svg?branch=master)](https://coveralls.io/github/Esukhia/botok?branch=master)   [![CodeFactor](https://www.codefactor.io/repository/github/esukhia/botok/badge)](https://www.codefactor.io/repository/github/esukhia/botok) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://black.readthedocs.io/en/stable/)


## Overview

botok tokenizes Tibetan text into words.

### Basic usage

#### Getting started
Requires to have Python3 installed.

    pip3 install botok

```python
>>> from botok import Text

>>> # input is a multi-line input string
>>> in_str = """ལེ གས། བཀྲ་ཤིས་མཐའི་ ༆ ཤི་བཀྲ་ཤིས་  tr 
... བདེ་་ལེ གས། བཀྲ་ཤིས་བདེ་ལེགས་༡༢༣ཀཀ། 
... མཐའི་རྒྱ་མཚོར་གནས་པའི་ཉས་ཆུ་འཐུང་།། །།མཁའ།"""


### STEP1: instanciating Text

>>> # A. on a string
>>> t = Text(in_str)

>>> # B. on a file
... # note all following operations can be applied to files in this way.
>>> from pathlib import Path
>>> in_file = Path.cwd() / 'test.txt'

>>> # file content:
>>> in_file.read_text()
'བཀྲ་ཤིས་བདེ་ལེགས།།\n'

>>> t = Text(in_file)
>>> t.tokenize_chunks_plaintext

>>> # checking an output file has been written:
... # BOM is added by default so that notepad in Windows doesn't scramble the line breaks
>>> out_file = Path.cwd() / 'test_pybo.txt'
>>> out_file.read_text()
'\ufeffབཀྲ་ ཤིས་ བདེ་ ལེགས །།'

### STEP2: properties will perform actions on the input string:
### note: original spaces are replaced by underscores.

>>> # OUTPUT1: chunks are meaningful groups of chars from the input string.
... # see how punctuations, numerals, non-bo and syllables are all neatly grouped.
>>> t.tokenize_chunks_plaintext
'ལེ_གས །_ བཀྲ་ ཤིས་ མཐའི་ _༆_ ཤི་ བཀྲ་ ཤིས་__ tr_\n བདེ་་ ལེ_གས །_ བཀྲ་ ཤིས་ བདེ་ ལེགས་ ༡༢༣ ཀཀ །_\n མཐའི་ རྒྱ་ མཚོར་ གནས་ པའི་ ཉས་ ཆུ་ འཐུང་ །།_།། མཁའ །'

>>> # OUTPUT2: could as well be acheived by in_str.split(' ')
>>> t.tokenize_on_spaces
'ལེ གས། བཀྲ་ཤིས་མཐའི་ ༆ ཤི་བཀྲ་ཤིས་ tr བདེ་་ལེ གས། བཀྲ་ཤིས་བདེ་ལེགས་༡༢༣ཀཀ། མཐའི་རྒྱ་མཚོར་གནས་པའི་ཉས་ཆུ་འཐུང་།། །།མཁའ།'

>>> # OUTPUT3: segments in words.
... # see how བདེ་་ལེ_གས was still recognized as a single word, even with the space and the double tsek.
... # the affixed particles are separated from the hosting word: མཐ འི་ རྒྱ་མཚོ ར་ གནས་པ འི་ ཉ ས་
>>> t.tokenize_words_raw_text
Loading Trie... (2s.)
'ལེ_གས །_ བཀྲ་ཤིས་ མཐ འི་ _༆_ ཤི་ བཀྲ་ཤིས་_ tr_ བདེ་་ལེ_གས །_ བཀྲ་ཤིས་ བདེ་ལེགས་ ༡༢༣ ཀཀ །_ མཐ འི་ རྒྱ་མཚོ ར་ གནས་པ འི་ ཉ ས་ ཆུ་ འཐུང་ །།_།། མཁའ །'
>>> t.tokenize_words_raw_lines
'ལེ_གས །_ བཀྲ་ཤིས་ མཐ འི་ _༆_ ཤི་ བཀྲ་ཤིས་__ tr_\n བདེ་་ལེ_གས །_ བཀྲ་ཤིས་ བདེ་ལེགས་ ༡༢༣ ཀཀ །_\n མཐ འི་ རྒྱ་མཚོ ར་ གནས་པ འི་ ཉ ས་ ཆུ་ འཐུང་ །།_།། མཁའ །'

>>> # OUTPUT4: segments in words, then calculates the number of occurences of each word found
... # by default, it counts in_str's substrings in the output, which is why we have བདེ་་ལེ གས	1, བདེ་ལེགས་	1
... # this behaviour can easily be modified to take into account the words that pybo recognized instead (see advanced usage)
>>> print(t.list_word_types)
འི་	3
། 	2
བཀྲ་ཤིས་	2
མཐ	2
ལེ གས	1
 ༆ 	1
ཤི་	1
བཀྲ་ཤིས་  	1
tr \n	1
བདེ་་ལེ གས	1
བདེ་ལེགས་	1
༡༢༣	1
ཀཀ	1
། \n	1
རྒྱ་མཚོ	1
ར་	1
གནས་པ	1
ཉ	1
ས་	1
ཆུ་	1
འཐུང་	1
།། །།	1
མཁའ	1
།	1
```

##### Custom dialect pack:

In order to use custom dialect pack:

- You need to prepare your dialect pack in same folder structure like [general dialect pack](https://github.com/Esukhia/botok-data/tree/master/dialect_packs/general)
- Then you need to instaintiate a config object where you will pass dialect name and path
- You can instaintiate your tokenizer object using that config object
- Your tokenizer will be using your custom dialect pack and it will be using trie pickled file in future to build the custom trie.

###### Example
```
from botok import WordTokenizer
from botok.config import Config
from pathlib import Path

def get_tokens(wt, text):
    tokens = wt.tokenize(text, split_affixes=False)
    return tokens

if __name__ == "__main__":
    config = Config(dialect_name="custom", base_path= Path.home())
    wt = WordTokenizer(config=config)
    text = "བཀྲ་ཤིས་བདེ་ལེགས་ཞུས་རྒྱུ་ཡིན་ སེམས་པ་སྐྱིད་པོ་འདུག།"
    tokens = get_tokens(wt, text)
    for token in tokens:
        print(token)
```


https://user-images.githubusercontent.com/24893704/148767959-31cc0a69-4c83-4841-8a1d-028d376e4677.mp4



## Acknowledgements

**botok** is an open source library for Tibetan NLP.

We are always open to cooperation in introducing new features, tool integrations and testing solutions.

Many thanks to the companies and organizations who have supported botok's development, especially:

* [Khyentse Foundation](https://khyentsefoundation.org) for contributing USD22,000 to kickstart the project 
* The [Barom/Esukhia canon project](http://www.barom.org) for sponsoring training data curation
* [BDRC](https://tbrc.org) for contributing 2 staff for 6 months for data curation

## Maintainance

Build the source dist:

```
rm -rf dist/
python3 setup.py clean sdist
```

and upload on twine (version >= `1.11.0`) with:

```
twine upload dist/*
```

## License

The Python code is Copyright (C) 2019 Esukhia, provided under [Apache 2](LICENSE). 

contributors:
 * [Drupchen](https://github.com/drupchen)
 * [Élie Roux](https://github.com/eroux)
 * [Ngawang Trinley](https://github.com/ngawangtrinley)
 * [Mikko Kotila](https://github.com/mikkokotila)
 * [Thubten Rinzin](https://github.com/thubtenrigzin)

 * [Tenzin](https://github.com/10zinten)
 * Joyce Mackzenzie for reworking the logo




%package help
Summary:	Development documents and examples for botok
Provides:	python3-botok-doc
%description help
# botok – Python Tibetan Tokenizer
![GitHub release](https://img.shields.io/github/release/Esukhia/botok.svg) [![Documentation Status](https://readthedocs.org/projects/botok/badge/?version=latest)](https://botok.readthedocs.io/en/latest/?badge=latest) [![Build Status](https://travis-ci.org/Esukhia/botok.svg?branch=master)](https://travis-ci.org/Esukhia/botok) [![Coverage Status](https://coveralls.io/repos/github/Esukhia/botok/badge.svg?branch=master)](https://coveralls.io/github/Esukhia/botok?branch=master)   [![CodeFactor](https://www.codefactor.io/repository/github/esukhia/botok/badge)](https://www.codefactor.io/repository/github/esukhia/botok) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://black.readthedocs.io/en/stable/)


## Overview

botok tokenizes Tibetan text into words.

### Basic usage

#### Getting started
Requires to have Python3 installed.

    pip3 install botok

```python
>>> from botok import Text

>>> # input is a multi-line input string
>>> in_str = """ལེ གས། བཀྲ་ཤིས་མཐའི་ ༆ ཤི་བཀྲ་ཤིས་  tr 
... བདེ་་ལེ གས། བཀྲ་ཤིས་བདེ་ལེགས་༡༢༣ཀཀ། 
... མཐའི་རྒྱ་མཚོར་གནས་པའི་ཉས་ཆུ་འཐུང་།། །།མཁའ།"""


### STEP1: instanciating Text

>>> # A. on a string
>>> t = Text(in_str)

>>> # B. on a file
... # note all following operations can be applied to files in this way.
>>> from pathlib import Path
>>> in_file = Path.cwd() / 'test.txt'

>>> # file content:
>>> in_file.read_text()
'བཀྲ་ཤིས་བདེ་ལེགས།།\n'

>>> t = Text(in_file)
>>> t.tokenize_chunks_plaintext

>>> # checking an output file has been written:
... # BOM is added by default so that notepad in Windows doesn't scramble the line breaks
>>> out_file = Path.cwd() / 'test_pybo.txt'
>>> out_file.read_text()
'\ufeffབཀྲ་ ཤིས་ བདེ་ ལེགས །།'

### STEP2: properties will perform actions on the input string:
### note: original spaces are replaced by underscores.

>>> # OUTPUT1: chunks are meaningful groups of chars from the input string.
... # see how punctuations, numerals, non-bo and syllables are all neatly grouped.
>>> t.tokenize_chunks_plaintext
'ལེ_གས །_ བཀྲ་ ཤིས་ མཐའི་ _༆_ ཤི་ བཀྲ་ ཤིས་__ tr_\n བདེ་་ ལེ_གས །_ བཀྲ་ ཤིས་ བདེ་ ལེགས་ ༡༢༣ ཀཀ །_\n མཐའི་ རྒྱ་ མཚོར་ གནས་ པའི་ ཉས་ ཆུ་ འཐུང་ །།_།། མཁའ །'

>>> # OUTPUT2: could as well be acheived by in_str.split(' ')
>>> t.tokenize_on_spaces
'ལེ གས། བཀྲ་ཤིས་མཐའི་ ༆ ཤི་བཀྲ་ཤིས་ tr བདེ་་ལེ གས། བཀྲ་ཤིས་བདེ་ལེགས་༡༢༣ཀཀ། མཐའི་རྒྱ་མཚོར་གནས་པའི་ཉས་ཆུ་འཐུང་།། །།མཁའ།'

>>> # OUTPUT3: segments in words.
... # see how བདེ་་ལེ_གས was still recognized as a single word, even with the space and the double tsek.
... # the affixed particles are separated from the hosting word: མཐ འི་ རྒྱ་མཚོ ར་ གནས་པ འི་ ཉ ས་
>>> t.tokenize_words_raw_text
Loading Trie... (2s.)
'ལེ_གས །_ བཀྲ་ཤིས་ མཐ འི་ _༆_ ཤི་ བཀྲ་ཤིས་_ tr_ བདེ་་ལེ_གས །_ བཀྲ་ཤིས་ བདེ་ལེགས་ ༡༢༣ ཀཀ །_ མཐ འི་ རྒྱ་མཚོ ར་ གནས་པ འི་ ཉ ས་ ཆུ་ འཐུང་ །།_།། མཁའ །'
>>> t.tokenize_words_raw_lines
'ལེ_གས །_ བཀྲ་ཤིས་ མཐ འི་ _༆_ ཤི་ བཀྲ་ཤིས་__ tr_\n བདེ་་ལེ_གས །_ བཀྲ་ཤིས་ བདེ་ལེགས་ ༡༢༣ ཀཀ །_\n མཐ འི་ རྒྱ་མཚོ ར་ གནས་པ འི་ ཉ ས་ ཆུ་ འཐུང་ །།_།། མཁའ །'

>>> # OUTPUT4: segments in words, then calculates the number of occurences of each word found
... # by default, it counts in_str's substrings in the output, which is why we have བདེ་་ལེ གས	1, བདེ་ལེགས་	1
... # this behaviour can easily be modified to take into account the words that pybo recognized instead (see advanced usage)
>>> print(t.list_word_types)
འི་	3
། 	2
བཀྲ་ཤིས་	2
མཐ	2
ལེ གས	1
 ༆ 	1
ཤི་	1
བཀྲ་ཤིས་  	1
tr \n	1
བདེ་་ལེ གས	1
བདེ་ལེགས་	1
༡༢༣	1
ཀཀ	1
། \n	1
རྒྱ་མཚོ	1
ར་	1
གནས་པ	1
ཉ	1
ས་	1
ཆུ་	1
འཐུང་	1
།། །།	1
མཁའ	1
།	1
```

##### Custom dialect pack:

In order to use custom dialect pack:

- You need to prepare your dialect pack in same folder structure like [general dialect pack](https://github.com/Esukhia/botok-data/tree/master/dialect_packs/general)
- Then you need to instaintiate a config object where you will pass dialect name and path
- You can instaintiate your tokenizer object using that config object
- Your tokenizer will be using your custom dialect pack and it will be using trie pickled file in future to build the custom trie.

###### Example
```
from botok import WordTokenizer
from botok.config import Config
from pathlib import Path

def get_tokens(wt, text):
    tokens = wt.tokenize(text, split_affixes=False)
    return tokens

if __name__ == "__main__":
    config = Config(dialect_name="custom", base_path= Path.home())
    wt = WordTokenizer(config=config)
    text = "བཀྲ་ཤིས་བདེ་ལེགས་ཞུས་རྒྱུ་ཡིན་ སེམས་པ་སྐྱིད་པོ་འདུག།"
    tokens = get_tokens(wt, text)
    for token in tokens:
        print(token)
```


https://user-images.githubusercontent.com/24893704/148767959-31cc0a69-4c83-4841-8a1d-028d376e4677.mp4



## Acknowledgements

**botok** is an open source library for Tibetan NLP.

We are always open to cooperation in introducing new features, tool integrations and testing solutions.

Many thanks to the companies and organizations who have supported botok's development, especially:

* [Khyentse Foundation](https://khyentsefoundation.org) for contributing USD22,000 to kickstart the project 
* The [Barom/Esukhia canon project](http://www.barom.org) for sponsoring training data curation
* [BDRC](https://tbrc.org) for contributing 2 staff for 6 months for data curation

## Maintainance

Build the source dist:

```
rm -rf dist/
python3 setup.py clean sdist
```

and upload on twine (version >= `1.11.0`) with:

```
twine upload dist/*
```

## License

The Python code is Copyright (C) 2019 Esukhia, provided under [Apache 2](LICENSE). 

contributors:
 * [Drupchen](https://github.com/drupchen)
 * [Élie Roux](https://github.com/eroux)
 * [Ngawang Trinley](https://github.com/ngawangtrinley)
 * [Mikko Kotila](https://github.com/mikkokotila)
 * [Thubten Rinzin](https://github.com/thubtenrigzin)

 * [Tenzin](https://github.com/10zinten)
 * Joyce Mackzenzie for reworking the logo




%prep
%autosetup -n botok-0.8.10

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-botok -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.8.10-1
- Package Spec generated